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Abstract—Self-supervised learning methods for 3D skeleton-1

based action recognition via contrastive learning have obtained2

competitive achievements compared to classical supervised meth-3

ods. Current researches show that adding a Multilayer Percep-4

tron (MLP) to the top of the base encoder can extract high-level5

and global positive representations. Using a negative memory6

bank to store negative samples dynamically can balance the7

ample storage and feature consistency. However, these methods8

need to consider that the MLP lacks accurate encoding of fine-9

grained local features, and a memory bank needs rich and diverse10

negative sample pairs to match positive representations from11

different encoders. This paper proposes a new method called12

Cross Momentum Contrast (CrossMoCo), composed of three13

parts: ST-GCN encoder, ST-GCN encoder with MLP encoder14

(ST-MLP encoder), and two independent negative memory banks.15

The two encoders encode the input data into two positive feature16

pairs. Learning the cross representations of the two positive17

pairs is helpful for the model to extract both the global and18

the local information. Two independent negative memory banks19

update the negative samples according to different positive20

representations from two encoders, diversifying the negative21

samples’ distribution and making negative representations close22

to the positive features. The increasing classification difficulty will23

improve the model’s ability of contrastive learning. In addition,24

the spatiotemporal occlusion mask data augmentation method25

is used to enhance positive samples’ information diversity. This26

method takes the adjacent skeleton joints that can form a27

skeleton bone as a mask unit, which can reduce the information28

redundancy after data augmentation since adjacent joints may29

carry similar spatiotemporal information. Experiments on the30

PKU-MMD Part II dataset, the NTU RGB+D 60 dataset, and the31

NW-UCLA dataset show that the CrossMoCo framework with32

spatiotemporal occlusion mask data augmentation has achieved33

a comparable performance.34

Index Terms—Cross contrastive learning, spatiotemporal oc-35

clusion mask, human skeleton action recognition.36

I. INTRODUCTION37

HUMAN action recognition is a promising field, widely38

used in video surveillance [1], smart home [2] and39
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human-computer interaction [3]–[5]. 3D human skeleton 40

recognition has recently been widespread because of its 41

low computer calculation consumption and strong robustness. 42

Many supervised algorithms have been proposed in recent 43

years [6]–[9]. These algorithms have achieved a high recogni- 44

tion accuracy with sufficient labels. However, data annotations 45

are so expensive and time-consuming that self-supervised 46

learning methods for action recognition have recently become 47

a research hotspot. Contrastive learning methods based on in- 48

stance discrimination have provided an effective way for self- 49

supervised 3D skeleton action recognition. Positive samples 50

are firstly processed into data with different information by 51

data augmentation, then embedded into high-level semantic 52

representation vectors by encoders. Contrastive learning makes 53

the positive embedding features close and far away from 54

the negative representations in the high-level vector space. 55

However, the low amount of information and sparse skeleton 56

sequence make it difficult for current models to sufficiently 57

extract and discriminate the latent critical spatiotemporal 58

representations, affecting the accuracy of self-supervised 3D 59

skeleton action recognition. In order to improve the ability 60

of the model to extract and discriminate information, we 61

propose the Cross Momentum Contrast (CrossMoCo), mainly 62

including three innovations: two encoders to crosswise learn 63

representations, two independent negative memory banks and a 64

new spatiotemporal occlusion mask data augmentation. These 65

three innovative points specifically address the following three 66

scientific issues. 67

3D skeleton sequences are low-information and easily af- 68

fected by the perspective, which leads to the difficulty of ex- 69

tracting critical spatiotemporal information without label guid- 70

ance. Extracting and Fusing global and local representations 71

will be helpful for the model to locate the critical spatiotem- 72

poral information. Most existing methods use a single base 73

encoder to extract representations. The base encoders, such 74

as [6]–[8], can sufficiently extract the local spatiotemporal 75

representations by establishing the adjacency matrix between 76

skeleton joints. However, they cannot accurately extract global 77

representations with a few annotations, leading to inconsis- 78

tencies between global and local representations. Considering 79

the problem, we add an MLP project head to the top of the 80

base encoder referred to [10], [11]. MLP can capture global 81

features by global mapping from its full connection layers, 82

while it will weaken the model’s ability to extract fine-grained 83

features. Combining these methods may be helpful in ex- 84

tracting global and local features. However, simply combining 85
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these features tends to cause inconsistency between different1

features. Considering the idea, we design a feature cross-2

learning method to sufficiently integrate extracted represen-3

tations, which crosswise compares query-key pairs embedded4

by different encoders. Specifically, the query representations5

embedded by one encoder are compared with the key represen-6

tations from another encoder to learn positive representations.7

Our work uses the classic graph convolution network ST-GCN8

[6] as the base encoder to extract local representations. In9

addition, we use ST-MLP, connected by the base encoder ST-10

GCN and MLP, to extract the global representations of the11

skeleton sequences. Cross-learning representations from the12

two encoders can make the network effectively integrate their13

global and local spatiotemporal information. It is helpful for14

our model to extract essential spatiotemporal information.15

Maintaining the consistency between the negative and16

the positive representations is challenging when the posi-17

tive sample representations are diverse. Although the above18

cross-learning global and local representations proposed in19

our paper are effective, the negative samples with single20

representations cannot improve the ability of the model to21

discriminate information when the positive representations22

are diverse. Improving the similarity between positive and23

negative representations in the self-supervised training process24

can increase the difficulty of discrimination, promoting the25

model to discriminate representations. There are two main26

ways to store negative samples. One method is using a large27

batch size to store negative samples [11], which can ensure the28

negative representations’ stability and consistency. However,29

it requires a large number of storage resources. In order30

to balance the ample storage and features’ stability, another31

method represented by MoCo [12] has recently been proposed32

to dynamically store negative samples by a memory bank33

with the First-In-First-Out stack strategy. The single memory34

bank in MoCo is challenging to provide high-quality negative35

samples similar to positive representations with global and36

local spatiotemporal characteristics. We use two independent37

negative memory banks to store negative samples, respec-38

tively updated by the key representations embedded by the39

two encoders via the same stack strategy with MoCo. The40

method effectively improves the similarity of positive and41

negative representations and increases the difficulty of model42

discrimination information in the training process.43

Common data augmentation methods [13] tend to produce44

positive skeleton samples with redundant information. They45

deal with discrete skeleton joints without considering their46

adjacent skeleton joints. 3D skeleton joints always carry lots of47

action information related to their adjacent joints that can form48

skeleton bones in the human skeleton topology through the49

adjacency matrix. Redundant samples make the information50

distribution inhomogeneous, which will affect the model to51

extract and discriminate critical representations. The proposed52

spatiotemporal occlusion mask data augmentation in our work53

can remove redundancy. It takes the adjacent skeleton joints54

as a mask unit. We occlude these mask units in random spatial55

positions and temporal frames with the random mask propor-56

tion. When a joint is occluded, its adjacent joints in the mask57

unit will also be occluded, removing the information related58

to the skeleton joint after data augmentation and ensuring the 59

independence and uniformity of the augmented information. 60

High-quality positive samples produced by data augmentation 61

can help extract and discriminate critical representations. 62

The experimental results on the PKU-MMD Part II dataset 63

[14], the NTU RGB+D 60 dataset [15], and the NW-UCLA 64

dataset [16] show that our proposed CrossMoCo can improve 65

the accuracy of self-supervised 3D skeleton action recognition. 66

We summarize our contributions as follows: 67

• CrossMoCo framework is proposed. CrossMoCo features 68

the crosswise learning of two positive representation pairs 69

embedded by the two encoders and the two independent 70

negative memory banks, which enhance the ability to 71

extract representations as well as the diversity of negative 72

samples’ feature distribution and consistency with the 73

positive representations from different encoders. 74

• We propose to use the base encoder ST-GCN and the ST- 75

MLP encoder composed of ST-GCN and MLP to generate 76

two different positive query-key pairs, which are used to 77

learn similar features from the positive samples by cross- 78

matching. Crosswise learning can help the model extract 79

critical spatiotemporal information by fusing global and 80

local representations. Two independent negative memory 81

banks are updated according to the two pairs of positive 82

key representations, respectively. 83

• We propose spatiotemporal occlusion mask data augmen- 84

tation to mask the skeleton data with a mask unit com- 85

posed of the occluded joints and their adjacent joints that 86

can form a skeleton bone in the human skeleton topology. 87

Compared with each skeleton joint’s independent mask 88

or perturbation data augmentation, the spatiotemporal 89

occlusion mask method can make the generated data carry 90

less redundant information to diversify the features of 91

positive samples. 92

• Experiments on the PKU-MMD Part II dataset, the NTU 93

RGB+D 60 dataset, and the NW-UCLA dataset show that 94

our CrossMoCo achieves a comparable result. 95

The remainder of this paper is organized as follows. Section 96

II describes related works on Supervised 3D Skeleton Learn- 97

ing, Self-supervised Contrastive Learning and Self-supervised 98

3D skeleton human action recognition. Section III represents 99

our proposed CrossMoCo method. Section IV shows the 100

experimental details and results. Section V summarizes our 101

work. 102

II. RELATED WORKS 103

Supervised 3D Skeleton Learning. Early action 104

recognition algorithms are mainly based on handcraft features 105

[17]–[19]. Deep learning methods are characterized by end- 106

to-end learning and have recently attracted much attention. 107

Algorithms based on RNN can extract spatiotemporal features 108

of successive skeleton frames [20]–[22], but it is likely to 109

suffer from gradient disappearance or gradient explosion as 110

well as colossal calculation. Methods based on CNN algorithm 111

have attracted extensive attention [23]–[25], while they need 112

regular spatiotemporal skeleton data. Methods based on 113

Graph Convolution Network (GCN) can well model irregular 114
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skeleton data by establishing an adjacency matrix, making1

3D skeleton-based action recognition achieve high accuracy2

yan2018spatial,li2019actional,shi2019two,liu2020disentangling.3

In recent years, researchers further develop many GCN-based4

methods by integrating attention mechanism and multi-5

streams fusion mechanism [22], [26], [27]. These methods6

are of high precision and lightweight. In our paper, ST-GCN7

[6] is taken as the base encoder.8

Self-supervised Contrastive Learning. In recent years,9

many contrastive learning algorithms based on instance dis-10

crimination have been proposed, which embed the positive11

and negative sample features into a high-dimensional space12

for discrimination. The representations of input data are treated13

as the anchor. Only the representations of the input samples14

after data augmentation are positive features. The positive15

features are pulled close, and the negative features are put16

away in the feature space. There are many algorithms to enrich17

positive pairs. Su et al. [28] proposed the encode and decode18

structures to reconstruct features. Gao et al. [29] proposed19

to design different data augmentation methods to improve20

the quantity and quality of positive sample pairs. Improving21

negative samples is also the research hotspot. Chen et al. [30]22

proposed to use a large size to compute negative embeddings.23

He et al. [12] used the memory bank to dynamically store24

negative embeddings via the First-In-First-Out strategy, which25

balances the features’ stability and diversity. These methods26

have already achieved excellent performances in the fields of27

self-supervised image reconstruction and image classification.28

Self-supervised 3D Skeleton Human Action Recognition.29

In recent years, many self-supervised learning methods based30

on 3D skeleton action recognition have been proposed, such31

as 3s-CrosSCLR [31] and Skeleton-Contrastive [32], which32

increase the positive sample pairs via data augmentation and33

design different encoders to improve the ability of feature34

representations learning. VideoMoCo [33] improves the mem-35

ory bank’s storage for negative sample pairs. Some popular36

algorithms improve instance discrimination by enhancing the37

feature learning ability of the encoder and decoder, such as P38

& C [28], LongT GAN [34], and MS2L [10]. These methods39

unilaterally consider the feature extraction of positive pairs40

or the storage of negative samples, which cannot improve41

the quality of positive and negative representations at the42

same time. Besides, they cannot combine the advantages of43

different encoders to further improve the network’s encoding44

capability. Based on these ideas, we propose the CrossMoCo45

for self-supervised 3D skeleton action recognition based on46

3s-CrosSCLR [31], whose framework is inspired by MoCo47

[12].48

III. CROSSMOCO METHOD49

The whole architecture is shown in Fig.1(b). There are two50

encoders: the base encoder ST-GCN and the combined encoder51

ST-MLP composed of ST-GCN and MLP in series. Two52

encoders simultaneously encode positive samples to generate53

two kinds of query-key feature pairs, and they are cross-54

dot multiplied to learn the positive representations. Unlike55

3s-CrosSCLR referred to the MoCo architecture [12], shown56
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Fig. 1. The illustration of MoCo and CrossMoCo architectures. (a) MoCo
architecture. A base encoder embeds the input data into positive query-key
pairs. A memory bank, the momentum encoder, stores the negative samples.
The encoder’s parameters are updated by gradient descent. (b) CrossMoCo
architecture. Two encoders are used to produce different positive query-key
pairs, a base encoder and a base encoder combined with MLP, which are
circled with red dotted lines and respectively marked with numbers 1 and 2
to distinguish. Two memory banks, the momentum encoder 1 and encoder 2,
store the negative samples. The CrossMoCo model learns the similarity of two
groups of positive and negative pairs. The parameters of the two encoders are
updated by gradient descent.

in Fig.1(a), we use two independent negative memory banks 57

to dynamically store negative samples, which are updated 58

according to positive key representations embedded by two 59

encoders, respectively. Fig.1(b) shows that q1 and q2 are the 60

positive pairs’ embeddings generated by the two encoders, 61

respectively. They are compared with the negative embeddings 62

from the two independent negative memory banks to form 63

two similarity functions, consisting in the final objective 64

function. The parameters of ST-GCN and MLP are updated 65

with gradient descent. 66

A. MoCo Architecture Review 67

MoCo features a memory bank to dynamically store neg- 68

ative pairs following the First-In-First-Out strategy, which 69

greatly makes use of memory storage. Besides, the parameters 70

of the key encoder are updated by the query encoder without 71

participating in gradient backpropagation. The expression is 72

shown as follows [12]: 73

θk ← θk + (1−m)θq (1)

where m ∈ [0, 1) is the momentum coefficient, and m is 74

vital to balance the feature representations’ update speed and 75

stability. The MoCo’s contrastive loss function is written as 76

follows [12]: 77

L = − log
exp(z · ẑ/τ)

exp(z · ẑ/τ) +
∑M

i=1 exp(z ·mi/τ)
(2)

where z and ẑ are respectively the input data’s query feature 78

embeddings and key feature embeddings that are encoded by 79

the two encoders after data augmentation, dot product is used 80

to compute the similarity of embeddings, mi is the negative 81
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Fig. 2. The architecture diagram of CrossMoCo training original skeleton data. Three data streams composed of the skeleton joint data, the skeleton motion data
and the skeleton bone data are respectively input into the network for contrastive learning. The spatiotemporal occlusion mask is used for data augmentation.
The encoder can embed the input data into the vector space and generate feature embedding representations, whose dimensions are N ×3×T ×V . There are
two encoders: the base encoder ST-GCN and the combined encoder ST-MLP, composed of the base encoder and MLP in series. Two encoders simultaneously
embed positive sample pairs to generate two kinds of query-key pairs with N×C dimensions, which are crosswise multiplied and form Lq and Lr . Lpos, the
similarity of positive feature representations, is the sum of Lq and Lr . Query features generated by ST-GCN and negative samples with C ×K dimensions
from memory bank 2 consist in Lq que. Lr que is the similarity of ST-MLP query features and the negative samples from memory bank 1. Lneg is the sum
of Lr que and Lq que. The contrastive learning loss function is formed by Lpos and Lneg whose iteration process is similar to MoCo. The query encoder’s
parameters of ST-GCN and MLP are updated by gradient descent. Parameters in the key encoder are updated according to formula (1).

tensor from the memory bank, and the τ is the temperature1

hyperparameter. In our work, we propose a new architecture,2

CrossMoCo, which improves MoCo by introducing query-3

key features crosswise learning and two independent nega-4

tive memory banks for storing negative samples. Consecutive5

skeleton data after data augmentation are sent to two different6

encoders to produce two sets of query-key pairs, and then7

they are multiplied crosswise to form the similarity functions8

of positive pairs. The similarity functions of the two positive9

pairs and the negative representations from two memory banks10

are also calculated. These similarity functions are formed into11

the final similarity loss function.12

B. Crosswise Learning Representations & Two Independent13

Negative Memory Banks14

We propose a method of cross-learning representations15

to improve feature learning. The architecture diagram of16

CrossMoCo training original skeleton data is shown in Fig.17

2. One encoder is used ST-GCN as the base encoder to18

embed the augmentation skeleton data into the vector space.19

The other encoder, ST-MLP, consists of ST-GCN and MLP20

connected in series. The original skeleton joint data are21

processed into three kinds of data streams as input, i.e., joint22

data, motion data and bone data, which are put into the data23

augmentation module to form various positive samples. After24

spatiotemporal occlusion mask data augmentation, the tensor25

dimension remains N × 3 × T × V . N represents the batch26

size, 3 represents the number of channels, T is the number27

of temporal frames, and V is the number of skeleton joints28

in each frame. The positive data are respectively embedded29

with the two encoders to generate two kinds of query-key 30

feature pairs, both N × C tensors. C is the channel number. 31

The query encoder’s parameters are updated by gradient 32

descent, while the key encoder’s parameters are updated 33

by formula (1). The contrastive learning loss function is 34

composed of Lpos and Lneg , where Lpos is the sum of 35

Lq and Lr. Lq is used to measure the similarity between 36

the positive samples’ query features encoded by ST-GCN 37

and the positive samples’ key features encoded by ST-MLP. 38

Lr is used to measure the similarity between the positive 39

samples’ query features encoded by ST-MLP and the positive 40

sample’s key features encoded by ST-GCN. Lneg is the sum 41

of Lq que and Lr que. Lq que is used to measure the similarity 42

between the positive samples’ query features encoded by 43

ST-GCN and the negative features from a memory bank, 44

updated according to the key features embedded by the 45

ST-MLP. Lr que is used to measure the similarity between 46

the positive samples’ query features encoded by ST-MLP and 47

the negative features from the other memory bank, updated 48

by the key features embedded by the ST-GCN encoder. The 49

tensors’ dimensions of negative samples from two banks 50

are both C × K. The MLP in ST-MLP is composed of 51

two linear layers of Full Connection (FC), shown in Fig. 52

3. Normalization and activation functions are used between 53

two FC layers. The inputs x are the positive samples after 54

data augmentation, which are encoded by the two encoders 55

ST-GCN and ST-MLP. Two positive query-key pairs are 56

respectively produced. i.e., (ZST−GCN
q (x), ZST−GCN

k (x)) 57

and (ZST−MLP
q (x), ZST−MLP

k (x)). ZST−GCN
q (x) and 58

ZST−MLP
q (x) are the query features. ZST−GCN

k (x) and 59
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Fig. 3. MLP architecture. MLP is composed of two linear layers of Full
Connection (FC). Batch Normalization and ReLU activation functions are
used between two FC layers.

ZST−MLP
k (x) are the key features. The similarity measure1

of positive pairs representations, Lpos (x), is obtained by the2

intersection dot product between them. It is expressed as3

follows:4

Lpos (x) = α exp
(
ZST−GCN
q (x) · ZST−MLP

k (x) /τ
)

+β exp
(
ZST−MLP
q (x) · ZST−GCN

k (x) /τ
) (3)

where α, β ∈ [0, 1) are the correlation coefficients, reflecting5

the influence of two parts on Lpos (x). Query features pro-6

duced by two encoders are also carried on dot product with7

negative pairs from two independent negative memory banks8

to calculate the similarity loss function between the positive9

features and negative features, Lneg (x), expressed as follows:10

Lneg (x) = λ
∑

n1∼N

exp
(
ZST−GCN
q (x) · Zn1 (x) /τ

)
+φ

∑
n2∼N∗

exp
(
ZST−MLP
q (x) · Zn2 (x) /τ

) (4)

where λ, φ ∈ [0, 1) are the correlation coefficients, reflecting11

the impact of the two kinds of similarities between query12

features from two encoders and negative samples from two13

independent negative memory banks on Lneg (x), N and N*14

are the two memory banks, which are respectively updated15

according to the key features embedded by the ST-MLP and16

ST-GCN encoders. The final contrastive learning loss function17

L (x) is expressed as follows:18

L (x) = − log
Lpos (x)

Lneg (x)
(5)

The pseudocode for CrossMoCo learning is shown as Al-19

gorithm 1.20

C. The Importance of Three Streams Skeleton Data for Con-21

trastive Learning22

We process the input data x as three streams’ data: the23

skeleton joint data xjoint, the motion data xmotion and the24

bone data xbone.25

xjoint ∈ {Xr (x) |r = 1, 2, 3, ..., J ; t = 1, 2, 3, ..., T},26

where r is the number of skeleton joints and T is the temporal27

frame. xjoint can be expressed in Cartesian coordinates as28

follows :29

Xr (t) = (xr
t , y

r
t , z

r
t )

T ∈ R3 (6)

Algorithm 1 Pseudocode of CrossMoCo Pre-training
Input: The three streams data x joint, motion, bone; f, the
base encoder ST-GCN; h, base encoder ST-GCN + MLP, ST-
MLP; queue 1, queue 2, negatives queue in two memory
banks, epoch e for the pretraining epochs
for epoch in e do

for x in Bactchsize do
x1, x2 = aug(x), aug(x);
q1, k1 = f(x1), f(x2);
r1, l1 = h(x1), h(x2);
compute Lpos by Eq.(3);
compute Lneg by Eq.(4);
compute L by Eq.(5), Eq.(9), Eq.(10);

end for
update θq by backpropagation;
update θk by Eq.(1);
enqueue k to queue;
enqueue l to queue2;

end for
Output: Optimized the two encoders f and h parameters

The motion data xmotion is obtained from the position 30

difference of the same skeleton joint among the adjacent 31

temporal frames and the expression is as follows: 32

xmotion = Xr (t+ 1)−Xr (t) (7)

xbone is formed by connecting the adjacent joints in the 33

same frame, expressed as follows: 34

xbone = Xr+1 (t)−Xr (t) (8)

The three streams’ data are independently used as the input 35

of the contrastive loss function to produce three contrastive 36

loss functions, i.e., Ljoint , Lmotion , Lbone. The expression 37

is: 38
Ljoint = L (xjoint)

Lmotion = L (xmotion)

Lbone = L (xbone)

(9)

The final contrastive loss function L is shown as: 39

L = aLjoint + bLmotion + cLbone (10)

where a, b, c ∈ (0, 1] are the correlation coefficients, reflecting 40

the impact of three contrastive loss functions on the final loss 41

function. 42

D. Skeleton Data Augmentation For Contrastive Learning 43

A critical design of the contrastive learning network is 44

augmenting the input data to get multi-view positive samples. 45

Diverse positive samples will obtain different view informa- 46

tion, which is helpful for the encoders to learn abundant 47

semantic representations. The common data augmentation 48

methods include shear [13], crop [35], etc. These augmentation 49

methods may not be suitable for skeleton joints because each 50

3D skeleton joint contains plenty of information related to 51

adjacent joints during the iterative process. There will be much 52

information redundancy if these methods are applied to the 3D 53

skeleton data augmentation. 54
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Inspired by the actual human skeleton occlusion in mon-1

itoring systems, we propose a new spatiotemporal occlusion2

mask data augmentation method to generate positive samples.3

The occlusion rate and position are random. Specially, a mask4

unit is composed of adjacent skeleton joints that can form a5

skeleton bone in the human skeleton topology rather than a6

random skeleton joint to reduce the redundant information.7

Firstly, we randomly mask position of skeleton joints with8

random different occlusion mask rates. The mask formula is9

expressed as follows:10

Maskj = Mask (RandomSampler (r ×Nj)) (11)

where Maskj is the mask matrix of skeleton joints, r is the11

skeleton joints’ spatial occlusion mask rate, Nj is the skeleton12

joint number, RandomSampler (·) is the random sampling13

function, which randomly extracts a certain number of skeleton14

joints from the complete skeleton joints, and Mask (·) is the15

mask function, which can block the selected samples. The16

final spatial occlusion mask formula of the skeleton joints is17

as follows:18

DSpatial (X) = X ⊙Mask (12)

where X is the input skeleton joint data matrix, DSpatial (X)19

is the skeleton data after the spatial occlusion mask data20

augment, and ⊙ is the dot production.21

Occlusion often lasts for several temporal frames, which22

may not be successive when occlusion events occur. Inspired23

by the phenomenon, we randomly mask some temporal frames24

for data augmentation. The temporal mask Maskt is expressed25

as follows:26

Maskt = Mask (RandomSampler (β ⊙ T )) (13)

where β is the temporal occlusion mask rate, and T is the27

temporal frames. The temporal frames occlusion mask and the28

skeleton joints occlusion mask are combined to form the spa-29

tiotemporal occlusion mask. The formula DSpatiotemporal (x)30

is expressed as follows:31

DSpatiotemporal (X) = DTemporal (DSpatial (x)) (14)

We visualize the spatiotemporal occlusion mask of three32

actions, i.e., drinking water, jumping up and falling down,33

shown in Fig.4. t1, t2, t3, t4 and t5 represents 10 frames, 2034

frames, 30 frames, 40 frames and 50 frames, respectively. The35

occlusion mask’s body part and occlusion rate are different36

and random between 50 frames. Precisely, in t1 frames, the37

left leg, the left foot, the right arm and the right hand are38

occluded. There is no occlusion in t2 frames. Both calves and39

feet are occluded in t3 frames. The left calves and the right40

feet are occluded in t4 frames. The right calves and right feet41

are occluded in t5 frames.42

IV. EXPERIMENTS43

The effectiveness of spatiotemporal occlusion mask data44

augmentation, encoders, MLP’s layers and the number of45

independent memory banks are first verified by the PKU MMD46

Part II dataset. Then our CrossMoCo is compared with the47

state-of-the-art algorithms on the PKU MMD part II dataset,48

the NTU RGB+D 60 dataset, and the NW-UCLA dataset.49

Section A introduces the three classical datasets. Section B 50

shows the experiment settings. Section C clarifies the details 51

of the ablation experiment. Section D compares our algorithm 52

with other advanced methods on the three datasets. 53

A. Datasets 54

PKU-MMD Part II Dataset. PKU MMD dataset is a large- 55

scale dataset covering a multi-modality 3D understanding of 56

human actions with almost 20,000 instances and 51 action 57

labels. It consists of two subsets. Part I is an easier version 58

for action recognition, while Part II is more challenging with 59

more noise caused by view variation. In our work, we choose 60

the Part II dataset to conduct experiments and the skeletal 61

sequences in PKU MMD Part II dataset are processed into 50 62

frames. 63

NTU RGB+D 60 Dataset. This dataset is a human be- 64

havior recognition dataset proposed by Rose Lab of Nanyang 65

University of technology. It contains 60 kinds of actions, 66

with a total of 56880 samples. Among them, 40 types are 67

daily actions; 9 types are health-related actions and 11 types 68

are interactive actions. The movements were performed by 69

40 people aged from 10 to 35. The dataset is collected by 70

Microsoft Kinect V2 sensors. Three cameras with different 71

angles are used. The collected data form includes depth in- 72

formation, 3D skeleton information, RGB frames and infrared 73

sequences. The 3D skeleton data we used includes the 3D 74

coordinates of 25 human joints in each frame. There are 75

two evaluation protocols: cross-subject (xsub) and cross-view 76

(xview). For the xview experiment, the training and test 77

datasets are divided by cameras from different views. The 78

18960 samples collected by camera 1 are used as the test 79

dataset, and the remaining samples are used as the training 80

dataset. For the xsub experiment, we divide the samples into 81

a training dataset and a test dataset according to the person 82

ID. There are 40320 samples in the training dataset with IDs 83

of 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 84

34, 35 and 38. The rest dataset is used as the test dataset with 85

37920 samples. In the following experiment, we abbreviated 86

NTU RGB+D 60 Dataset, the xivew and the xsub evaluation 87

protocols to NTU-60 Dataset, NTU-60 xview and NTU-60 88

xsub, respectively. In our work, we split the datasets both in 89

xview and in xsub experiments to 50 frames. 90

Northwestern-UCLA Dataset. The dataset includes 10 91

kinds of actions with 1494 video clips, which are captured by 92

three Kinect cameras. Each action is performed by 10 different 93

subjects. We use the video samples from the first two cameras 94

as training datasets and the rest are test datasets, referring to 95

[36]. 96

B. Experimental Settings 97

All our experiments are conducted on the server with the 98

Tesla-V100 GPU. The deep learning framework in our work 99

is Pytorch. We preprocess the original data by eliminating the 100

missing data and reordering the rest. In our experiments, the 101

temporal frames are all resized to 50 frames. Hyperparameters 102

are set as follows: the batch size is set to 128; the size of each 103
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Fa l l  down
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Fig. 4. Visualization of spatiotemporal occlusion mask of skeleton data on
three actions: drink water, jump up and fall down. t1, t2, t3, t4, t5 represent
different temporal frames. The occluded body parts of each frame are random.

memory bank M is set to 16 K and the momentum is set to1

0.999.2

Data Augmentation T. Instead of traditional data augmen-3

tation such as shear and crop, we conduct the spatiotemporal4

occlusion mask for input skeleton data and study the effect of5

different spatiotemporal mask rates for data augmentation.6

Self-supervised Pre-training. We follow the experiment in7

3s-CrosSCLR [31]. For data augmentation, we respectively8

set the percent of spatial occlusion mask and temporal frames9

occlusion mask to 0.6 and 0.5. The model is trained for 30010

epochs with the learning rate 1e-5. Specially, we cross-train11

our model 150 epochs.12

Linear Evaluation Protocol. A linear classifier is used for13

the action recognition task. We freeze two encoders to prevent14

them from gradient descent and then train the linear classifier15

(a fully-connected layer followed by a softmax layer) with a16

supervised training mode. The training lasts for 100 epochs17

with a learning rate 0.1.18

Semi-supervised Evaluation Protocol. We pre-train the19

encoder with all data and then fine-tune the whole model with20

only 1% or 10% randomly selected labeled data.21

Fine-tuned Evaluation Protocol. We add a linear classifier22

to the two encoders and train them as a whole for gradient23

descent. We train for 100 epochs with a learning rate 1e-424

and compare it with fully-supervised methods.25

C. Ablation Study26

All experiments in this section are conducted on PKU MMD27

Part II dataset with self-supervised pre-training. We pre-train28

300 epochs with Tesla-V100.29

Data Augmentation. In this section, we compare the effects30

of spatiotemporal mask rate on data augmentation by con-31

ducting linear evaluation experiments. The results are shown32

in Table I. It can be seen that when the rates of temporal33

frame occlusion mask and skeleton joint spatial occlusion34

mask are respectively 0.5 and 0.6, CrossMoCo can reach35

TABLE I
THE TEST ACCURACY (%) OF DIFFERENT SPATIOTEMPORAL OCCLUSION

MASK RATES ON THE PKU MMD PART II DATASET

Augmentation
PKU MMD Part II (%)Temporal Occlusion Spatial Occlusion

Mask Rate Mask Rate
0.2 0.2 15.8
0.4 0.4 22.9
0.6 0.6 30.4
0.5 0.6 29.8
0.8 0.6 23.2
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Fig. 5. The accuracy curve of spatiotemporal occlusion mask with linear
evaluation. The test accuracy with the spatiotemporal mask is the highest.

the highest accuracy on the PKU MMD part II dataset. In 36

subsequent experiments on this dataset, we choose the set of 37

spatiotemporal mask parameters (0.5, 0.6) as hyperparameters. 38

The accuracy curve of linear evaluation with the spatiotempo- 39

ral mask occlusion is shown as Fig.5. The linear evaluation 40

accuracy of the spatiotemporal mask is the highest. The single 41

spatial mask performs better than the single temporal mask. 42

It means that the positive samples’ qualities from the spatial 43

skeleton mask are higher than those of the temporal mask. 44

The mask unit in our proposed spatial mask is the adjacent 45

skeleton joints that can form a skeleton bone in the human 46

skeleton topology. When a skeleton joint is occluded, the 47

adjacent joints’ information will also be cleared, preventing 48

the network from obtaining spatiotemporal information related 49

to this occluded skeleton joint from adjacent skeleton joints. It 50

effectively reduces the redundant information among positive 51

samples after data augmentation. The diverse positive samples 52

with independent and multi-level feature information will 53

significantly improve our model’s contrastive learning ability. 54

55

Impact of Encoders On CrossMoCo. In this part, we ex- 56

plore the effectiveness of ST-GCN encoder, ST-MLP encoder, 57

uncrossed ST-GCN encoder with ST-MLP encoder whose 58

query-key pairs are multiplied independently, and crossed ST- 59

GCN encoder with ST-MLP encoder whose query-key pairs 60

are cross-multiplied. Results are shown in Table II. 61

Crossed encoder reaches the highest accuracy and increases 62

the 8.2 % and 4.5 % than the uncrossed encoder on PKU MMD 63

Part II in two experiments, respectively. The crossed encoder 64
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TABLE II
TEST ACCURACY (%) OF CROSSMOCO’S ENCODERS ON THE PKU MMD

PART II DATASET IN TERMS OF THE LE AND FE TESTS

Encoder PKU MMD Part II (%)
L E F E

ST-GCN 30.0 49.8
ST-MLP 26.6 45.7

Uncrossed ST-GCN+ST-MLP 28.1 50.9
Crossed ST-GCN+ST-MLP 30.4 57.3

combines two encoders’ advantages by crosswise learning the1

query-key pairs’ features generated by ST-GCN and ST-MLP.2

ST-MLP avoids network dependence on long frames via global3

encoding. ST-GCN captures fine-grained action information4

features via local encoding. The feature representations gen-5

erated by ST-GCN and ST-MLP in the uncrossed encoder are6

only simple addition, needing more information fusion. The7

feature representations learned by the uncrossed encoder may8

be inconsistent, and the positive sample features generated by9

another encoder will be regarded as negative sample features10

when the pre-training model is frozen in the LE (Linear11

Evaluation) test, leading to confusion in classification and low12

performance. However, in the FE (Fine-tuned Evaluation) test,13

the fine-tuning of the pre-training model under the guidance14

of the label makes the feature representations unified, thus15

improving the accuracy. For the crossed encoder, the feature16

representations generated by ST-GCN and ST-MLP interact to17

realize the fusion of local and global information. Even if the18

pre-training model is not fine-tuned, the feature representations19

extracted from the whole model are quite uniform. Therefore,20

the crossed encoder has a good performance in the LE test.21

The experiment shows that the simple combination of multiple22

encoders cannot make the model perform better than the single23

encoder. Cross-learning feature representations can integrate24

the advantages of different base encoders to make the network25

perform well on public datasets. It provides a solution for the26

future representations fusion of various encoders in the field27

of contrastive learning.28

In general, the accuracy’s gains in the LE test are lower than29

those in the FE test. In the LE test, only the full connection30

layer is updated according to the labels’ information. The31

pre-training model is frozen and cannot be updated in the32

downstream task, limiting the gains in the downstream task.33

However, the whole model is fine-tuned to complete the34

downstream task in the FE test. The fine-tuning of the pre-35

training model makes features extracted by the whole model36

more precise and accurate than those of the frozen pre-training37

model in the downstream task so that the accuracy’s gains are38

greater than those in the LE test.39

Impact of the Memory Banks’ Numbers. In this section,40

we explore the effectiveness of two memory banks of the41

CrossMoCo model. In this experiment, the encoders are set42

to crossed ST-GCN encoder with ST-MLP encoder. Results43

are shown in Table III.44

The accuracy is the highest when we adopt two indepen-45

dent negative memory banks. However, when there are more46

memory banks, the number of negative sample pairs will be47

much larger than that of positive sample pairs, which is easy48

TABLE III
TEST ACCURACY (%) OF CROSSMOCO’S MEMORY BANKS ON THE PKU

MMD PART II DATASET IN TERMS OF THE LE AND FE TESTS

Numbers of memory banks PKU MMD Part II (%)
L E F E

1 29.6 47.4
2 30.4 57.3
3 27.3 50.1

TABLE IV
TEST ACCURACY (%) OF MLP LAYERS IN ST-MLP ON THE PKU MMD

PART II DATASET IN TERMS OF THE LE AND FE TESTS

MLP Layers in ST-MLP PKU MMD Part II (%)
L E F E

1 30.4 57.3
2 23.8 49.4
3 29.8 49.7

TABLE V
COMPARISON WITH DIFFERENT MODELS ON THE NTU-60 DATASET AND
THE NW-UCLA DATASET IN THE TERMS OF LINEAR EVALUATION TEST

ACCURACY (%)

Methods NTU-60 (%) NW-UCLA (%)xview xsub
LongT GAN [34] 48.1 39.1 74.3
P&C [28] 76.3 50.7 71.4
AS-CAL [13] 64.8 58.5 75.6
3s-SkeletonCLR [31] 79.8 75.0 70.4
3s-CrosSCLR [31] 83.4 77.8 83.6
3s-AimCLR [37] 83.8 78.9 –
Auto-encoder [38] 70.3 78.3 87.4
VEJP+VPE [39] 54.9 51.4 85.4
4s-MG-AL [40] 64.7 68.0 81.1
CrossMoCo (ours) 84.9 78.4 87.6

for the model to take a shortcut in representation learning. 49

If there is only one memory bank, the negative samples’ 50

feature updating in the memory bank cannot be well consistent 51

with the positive key representations embedded by the two 52

encoders. It will reduce the difficulty for our network to 53

discriminate the positive and negative representations so that 54

the ability of the network’s contrastive learning cannot be well 55

improved. 56

Impact of MLP with Different Layers. In this section, 57

we explore the influence of the number of MLP layers of ST- 58

MLP on CrossMoCo. The experimental results are shown in 59

Table IV. It can be seen that when the MLP layer is one, the 60

test accuracy is the highest on PKU MMD Part II. It shows 61

that one layer of MLP is sufficient for data fitting. If the MLP 62

layer’s number is more than the appropriate number of fitting 63

layers, it will lead to the difficulty of training and increase the 64

higher training error, which will make the network fall into 65

the local optimization and lead to network degradation. 66

D. Comparison With the State-Of-The-Art 67

In this section, we compare CrossMoCo with the state-of- 68

the-art contrastive learning models with different evaluation 69

protocols. 70

Linear Evaluation Results on NTU-60 and NW-UCLA 71

Datasets. Table V shows that our CrossMoCo performs best 72

on the NTU-60 xview dataset and the NW-UCLA dataset. 73
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(a) (b) (c)

Fig. 6. The t-SNE visualization of feature embeddings’ distributions from three algorithms on the NW-UCLA dataset. Different colors represent different
action categories. The same classes are expected to be grouped together and different classes are expected to be far way. (a) 3s-SkeletonCLR. (b) 3s-CrosSCLR.
(c) CrossMoCo (ours).

TABLE VI
SEMI-SUPERVISED EVALUATION ACCURACY (%) ON THE PKU MMD PART II DATASET , THE NTU-60 XVIEW DATASET AND THE NW-UCLA DATASET

Methods Label Fraction Accuracy (%)
PKU MMD Part II NTU-60 xview NW-UCLA

LongT GAN [34] 1% 12.4 – 18.2
MS2L [10] 1% – – 21.9

ISC[55] 1% – 38.1 –
3s-CrosSCLR [31] 1% 10.2 50.0 29.9
CrossMoCo (ours) 1% 16.4 21.7 31.4
LongT GAN [34] 10% 25.8 – 59.9

MS2L [10] 10% 26.1 – 60.5
ISC[55] 10% – 72.5 –

3s-CrosSCLR [31] 10% 21.1 77.8 66.5
CrossMoCo (ours) 10% 26.7 68.7 69.7
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Fig. 7. The confusion matrix of proposed CrossMoCo on two large public datasets. (a) PKU MMD Part II dataset. (b) NTU-60 xiew dataset.

Specially, it exceeds the baseline algorithm 3s-CrosSCLR by1

1.8 % and 4.8 % on NTU-60 xivew and NW-UCLA datasets,2

respectively. In addition, t-SNE [41] is used to show the3

distributions of feature embeddings from 3s-SkeletonCLR, 3s-4

CrosSCLR and CrossMoCo (ours) algorithms on the NW-5

UCLA dataset shown in Fig.6. Different colors represent6

action categories. The same action classes are expected to7

converge, and different action classes are expected to separate.8

It can be seen intuitively that CrossMoCo clusters better than9

that of 3s-CrosSCLR. The same categories are more closed10

and different categories are farther apart.11

Semi-supervised Evaluation Results on Three Datasets.12

We compare our model with other excellent algorithms under13

semi-supervised evaluation with a small number of labels on 14

the PKU MMD Part II dataset, the NTU-60 xview dataset, 15

and the NW-UCLA dataset, shown in Table VI. We test the 16

effect of different algorithms on the linear evaluation of three 17

datasets with 1 % and 10 % labels. When the label fractions are 18

respectively 1 % and 10 %, the test results on PKU MMD Part 19

II are 60.8 % and 26.5 % higher than that of 3s-CrosSCLR. 20

Specially, CrossMoCo has achieved the best results both on 21

the PKU MMD Part II and the NW-UCLA datasets. 22

Fine-tuned Evaluation Results. We compare the fine-tuned 23

evaluation of different algorithms on the PKU MMD Part 24

II dataset and the NTU-60 dataset, as shown in Table VII. 25

Our algorithm has outperformed 9.1 % of the baseline 3s- 26
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TABLE VII
FINE-TUNED EVALUATION ACCURACY (%) WITH DIFFERENT ALGORITHMS

ON THE PKU MMD PART II DATASET AND THE NTU-60 DATASET

Methods PKU MMD Part II (%) NTU-60 (%)
xview xsub

3s-ST-GCN [6] 26.1 91.4 85.2
SkeletonCLR [31] 37.7 88.9 82.2
3s-CrosSCLR [31] 52.5 92.5 86.2
3s-AimCLR [37] – 92.8 86.9

Auto-encoder [38] – 86.5 76.5
CrossMoCo (ours) 57.3 93.1 87.2

CrosSCLR on the PKU MMD Part II dataset and is superior1

to other algorithms on the NTU-60 dataset. Fig.7 shows the2

confusion matrix of the proposed CrossMoCo on PKU MMD3

Part II and the NTU-60 xiew. As shown in the confusion4

matrix, most of the actions are predicted by our model.5

V. CONCLUSION6

In our work, we propose a new contrastive learning frame-7

work CrossMoCo for self-supervised 3D human skeleton8

action recognition. It encodes positive input data via two9

encoders, the base encoder ST-GCN and the ST-MLP encoder10

by adding an MLP project head to the top of the ST-GCN. Two11

kinds of semantic query-key positive feature representations12

embedded by the encoders are cross-multiplied to learn local13

and global semantic representations, improving representa-14

tion learning ability. Inspired by MoCo, we establish two15

independent negative memory banks to provide high-quality16

negative samples that have consistent representations with the17

positive embeddings from the two encoders. The similarity of18

positive and negative representations increases the difficulty19

of discrimination, promoting the model’s contrastive learning.20

Besides, we invent the spatiotemporal occlusion mask data21

augmentation method to generate positive samples without22

redundant information. Experiments on the PKU-MMD Part23

II dataset, the NTU RGB+D 60 dataset, and the NW-UCLA24

dataset show that our CrossMoCo has achieved a comparable25

result.26

In the future, more downstream tasks, such as 3D action27

retrieval and prediction, will be completed. Moreover, the28

labels’ language semantic information will also be used as the29

input to guide our model to learn representations and realize30

zero-shot action recognition.31
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