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Abstract— Having good knowledge of terrain information is
essential for improving the performance of various downstream
tasks on complex terrains, especially for the locomotion and
navigation of legged robots. We present a novel framework for
neural urban terrain reconstruction with uncertainty estima-
tions. It generates dense robot-centric elevation maps online
from sparse LiDAR observations. We design a novel pre-
processing and point features representation approach that
ensures high robustness and computational efficiency when
integrating multiple point cloud frames. A Bayesian-GAN
model then recovers the detailed terrain structures while simul-
taneously providing the pixel-wise reconstruction uncertainty.
We evaluate the proposed pipeline through extensive simulation
and real-world experiments. It demonstrates efficient terrain
reconstruction with high quality and real-time performance
on a mobile platform, which further benefits the downstream
tasks of legged robots. (See https://kin-zhang.github.io/ndem/
for more details.)

I. INTRODUCTION

Recent research on mobile robots presents promising
progress in the locomotion or navigation problems in com-
plex environments, where the scene perception quality acts
as an important factor in the task performance. However,
efficiently obtaining an accurate environment representation
is still a challenging task due to the occlusions and the
inaccuracy of sensors and odometry [1]. While intensive
research has been conducted on 3D scene reconstruction
with global information of the scene [2], [3], the high
computational expense limits their applications in various
robotic applications with online mapping requirements.

Elevation maps are widely used for terrain representation,
which can be built efficiently online with onboard devices.
Fankhauser et al. [4], [5] propose a probabilistic estimation
method for robot-centric elevation mapping. Miki et al.
[6] present a GPU implementation for elevation mapping
with additional features. However, these approaches are
sensitive to sensor noises and odometry drifts, resulting in
inferior quality when presenting detailed terrain structures.
In addition, generating dense terrain representations is still
an ill-posed problem due to occlusions and sparsity of
observations.

To solve these issues, some approaches improve the map-
ping results based on the prior knowledge of terrain features,
especially in urban environments [1]–[3], [6]. Due to the
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Fig. 1. We present an online neural dense elevation mapping approach that
recovers detailed urban terrain structures from sparse and noisy 16-channel
LiDAR observations (a)(b), while additionally providing the terrain recon-
struction uncertainty (c). The framework can further benefit the downstream
locomotion and navigation tasks, especially for legged robots.

strong features recovery capabilities, Generative Adversarial
Networks (GANs) are adopted for image inpainting [7]–[9]
and 2D occupancy map completion [10], [11]. While image
inpainting tasks focus more on visual rationality, directly
using the generated maps in robotic applications may cause
danger due to the absence of solid observations in the oc-
cluded regions. Therefore, providing the map reconstruction
uncertainty is essential for the robust performance of the
downstream tasks.

We present a neural urban terrain reconstruction frame-
work for online end-to-end elevation mapping with mea-
surable uncertainties using sparse LiDAR observations (Fig.
1). We design a novel approach to pre-process the point
cloud frames. It maintains a group of statistical point features
to represent the height distribution of points at each cell,
enabling robust and efficient integration of new and history
point frames. A Bayesian-GAN model is trained to generate
dense elevation maps with minute details from the noisy and
sparse point features based on the prior knowledge of urban
terrain structures. The model additionally provides the recon-
struction uncertainty for each grid, which can further improve
the robustness of various downstream tasks. Compared with
the state-of-the-art approaches [1], [6], [12], our approach
provides robust dense reconstruction results with minute
terrain details and uncertainty estimations while introducing
less computational burden. Our main contributions include:

• We propose a novel framework for robust online neural
terrain reconstruction to generate dense elevation maps
from noisy and sparse LiDAR observations.

• We design a novel points pre-processing approach to
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represent and maintain the point features with a high
data utilization rate and computational efficiency.

• We develop a Bayesian-GAN model that recovers the
urban terrain structures with minute details and provides
the pixel-wise reconstruction uncertainty.

• We conduct extensive experiments on our approach
for high-quality terrain mapping with real-time perfor-
mance on an AGX Xavier, demonstrating its benefits to
downstream robotic tasks.

II. RELATED WORK

A. Scene Representation Requirements in Downstream Tasks

Robotic applications adopt various terrain representation
approaches to fulfill their requirements in specific scenarios.
Existing approaches perform global path planning on meshes
[13]–[15], Signed Distance Fields (SDFs) [16]–[18], and
Neural Radiance Fields (NeRFs) [19], [20]. To achieve online
local path planning in complex 3D scenarios, Frey et al. [21]
use occupancy voxels to build volumetric traversability maps
for quadrupedal robots. However, generating high-resolution
voxels for detailed scene representation still brings a heavy
burden to onboard devices. As legged robots concern more
about the ground conditions, elevation maps are more widely
adopted in their applications with online mapping require-
ments including motion planning [22]–[26] and navigation
[27]–[31].

B. 3D Scene Reconstruction Approaches

Extensive research has been conducted on 3D scene re-
construction in the past decades. Truncated Signed Distance
Fields (TSDFs) are widely used for detailed structure repre-
sentation, which can be further transformed into Euclidean
Signed Distance Fields (ESDFs) as proposed in Voxblox [32]
or VDBFusion [33] for navigation. NeRFs are constructed
using multi-view images [34]–[36] and adopted to represent
large-scale urban environments [2], [3]. However, they nor-
mally require intensive observation for better performance
and introduce a high computation burden to mobile devices.
This limits their applications with online local mapping
requirements such as locomotion, local path planning, and
exploration.

Some approaches describe the volumetric occupancy or
terrain height to simplify the calculation. Hornung et al. [37]
propose OctoMap for probabilistic 3D occupancy estimation.
Jia et al. [38] develop an accelerator for real-time OctoMap
building on embedded platforms. Stepanas et al. [39] adopt
GPU for online occupancy map generation. As mentioned
before, elevation maps are widely used as more efficient
representations of terrain features. Fankhauser et al. [4],
[5] present a robot-centric probabilistic elevation mapping
approach that also returns the mapping uncertainty. Miki
et al. [6] implement a GPU pipeline for efficient elevation
mapping while supporting various post-processing functions.
However, these approaches normally fail to recover dense
and detailed terrain features due to occlusions and the
inaccuracy of sensors and pose estimations. Our approach

provides online neural dense elevation mapping with uncer-
tainty estimations. Different from the uncertainty in [4], [5],
our approach additionally considers the uncertainty from map
completion, which leads to a more robust performance of
downstream tasks.

C. Scene Completion and Map Inpainting

Various map inpainting and scene completion methods
leverage data-driven approaches or the prior information of
terrain structure to solve the occlusion problem and optimize
the reconstruction results. Existing works use learning-based
approaches for 2D occupancy maps inpainting [11], [40],
or for 3D semantic scene completion [41], [42]. Hoeller et
al. [1] implement an online scene reconstruction method to
generate occupancy voxels for structured terrains using a
neural network.

Some recent work introduces real-time elevation map
inpainting approaches. Given a raw elevation map, Miki et al.
[6] apply inpainting filters and perform plane segmentation
to recover the empty grids and extract geometric surfaces
from the noisy map. Stölzle et al. [12] recover the occluded
region on the raw map using a neural network. We present
an end-to-end framework that efficiently pre-processes the
sparse LiDAR observations to obtain the point features
and then adopts a Bayesian-GAN model for real-time local
dense elevation mapping. By using the robust point features
representation approach and leveraging the strong generation
capabilities of the proposed model, our approach maintains
better details of complex terrain structures than [26] and [12].

III. APPROACH

This section explains our problem formulation and il-
lustrates how we design the dataset generation environ-
ment, data pre-processing approach, network architecture,
and training objectives in detail.

A. Problem Formulation

We focus on an online mapping scenario, where the robot
continuously observes the surrounding static environment
during its motion and receives sparse 3D point clouds from
a LiDAR. The local terrain features are represented as robot-
centric grid maps yh, where each grid cell on the 2D plane
contains a height value of the corresponding location. Our
elevation mapping process is to obtain dense maps of height
estimations ŷh that recover the terrain features given the

Fig. 2. Examples of the simulation environment for dataset collection. The
generated maps contain diverse types of urban terrains. A LiDAR with 16
channels is simulated to observe the environment, whose pose changes with
the local topography considering the robot’s foot configuration (red balls).



Real-time Neural Dense Elevation Mapping

Encoder
ResNet 

Blocks
Decoder

Edge Branch

(for training only)

…

ElevationUncertainty

Edge

𝒟𝐸

ℒ𝑒
𝑎𝑑𝑣

ℒ𝑒
𝑓𝑚

ℒ𝑒
𝑏𝑐𝑒

ℒℎ
𝑟𝑒𝑐

ℒℎ
𝑡𝑣

𝒟𝐻

ℒℎ
𝑎𝑑𝑣

ℒℎ
𝑓𝑚

Statistical Point Features    

Incoming 

Point Cloud Frame

(Shifted by Odometry)

𝒙𝑓
(𝑖)

Frame features

𝒙(𝑖−1)

𝒙(𝑖)

Fig. 3. The proposed elevation mapping pipeline. It first pre-processes the observed sparse point clouds to update the maintained statistical point
features. A Bayesian-GAN model then encodes the current point features to generate the elevation map and the pixel-wise reconstruction uncertainty while
simultaneously returning a binary edge map for multitask learning in the training phase. Two discriminators are adopted to guide the learning of elevation
map and edge map generation using adversarial loss Ladv and feature matching loss Lfm.

noisy and sparse observations P from sequential LiDAR
frames and the robot motion estimates e.

Generating dense elevation maps to represent detailed
terrain features is a heavily ill-posed problem due to the ob-
servation inaccuracy and occlusions. Therefore, our approach
specifically concerns the terrain reconstruction problem in
urban environments, which holds the prior knowledge that
the terrains are structured with sharp edges, flat surfaces, or
smooth slopes. We take the advantage of the GAN models
to learn the urban structures for terrain feature recovery and
map generation. The point cloud frame P(i) at time i is
processed to update the maintained point features x(i) which
is a multi-channel pseudo image containing the statistical
features of the previous point clouds. Then a GAN-based
inpainting model can be modified for dense map generation.
The concept of Bayesian learning [43] is additionally intro-
duced to measure the terrain reconstruction uncertainty for
better training performance and more robust behaviors of the
downstream tasks.

B. Dataset Generation
To generate the dataset for training, we prepare multiple

maps with various urban terrain features and simulate a 16-
channel LiDAR to observe the environment (Fig. 2). The
maps contain regions of flat grounds, stairs, slopes, corridors,
as well as irregular obstacles with various shapes and height
values. The LiDAR is placed 0.50m above the ground, which
adopts the configuration of a Jueying Mini [44] quadrupedal
robot (Fig. 1(b)). The ground truth height maps yh are 5m
× 5m patches with a resolution of 0.04m centered around
the position of the robot. We also generate the ground truth
binary edge maps ye using the Canny edge detector as done
in [43] for multitask learning [45] which will be further
explained in Section III-D.

The environment settings and observations are extensively
augmented, which is essential to reduce the sim-to-real gap
[1]. In each step, we move the LiDAR forward along a
predefined trajectory around the global map center with a
random linear velocity in [0.0, 1.0]m/s. We also calculate
the robot’s footprint positions according to the robot con-
figuration and the local topography to obtain the corre-

sponding LiDAR poses which are then slightly perturbed
to simulate the body vibrations from locomotion. When a
new point cloud is received, we add small random values
in [−0.02, 0.02]m on the coordinate of each point to mimic
the sensory noise. The robot odometry in each step is also
perturbed with random translations in [−0.02, 0.02]m and
rotations in [−0.04, 0.04]rad to simulate the inaccuracy from
pose estimation.

We define a grid cell inside the mapping region around
the robot to be observed if at least one data point is found at
that cell during the robot motion. Since the observations right
after initialization are too sparse for a meaningful terrain
reconstruction, we calculate the “observation rate” of a patch,
which is the number of observed grids divided by the total
number of grids in that patch, to filter out invalid data frames.
The data frame will be dropped if the observation rate of the
local patch is less than 25%. The final dataset contains 30k
valid data with an average observation rate of 60%.

C. Point Features Representation
Due to the sparsity of LiDAR observations, it is difficult to

recover detailed terrain structures from single LiDAR frames.
One trivial solution is to use a buffer that replaces the old
point cloud with the new frame and processes all the frames
inside to obtain the network input in each step. However,
this approach drops the history data to save memory and
repeatedly processes a large number of points, which results
in a low data utilization rate and computation efficiency.
Hoeller et.al [1] adopts a recurrent structure to continuously
refine the previous reconstruction results. Nevertheless, this
approach may introduce the potential risk of accumulating
the network reconstruction errors.

We design a robust data pre-processing approach that
represents the distributions of the point height values in
individual grids as they reflect the terrain structures. For
example, the height values of points on the flat ground gather
around the height of the surface, which approximately fol-
lows a Gaussian distribution. While on a vertical surface, the
points may distribute uniformly from the upper to the lower
boundary of the edge. In this case, we adopt Gaussian models
to represent the point distribution properties and calculate



the statistical features (denoted in upper case) for points in
each grid as the network input. The maintained point features
x(i) for individual grids at time i contains the number
of points C(i), the mean and variance of observed height
values E(i)(Z) and V ar(i)(Z), as well as the mean and
variance of the maximum and the minimum height overtime
E(i)(Zmax), V ar(i)(Zmax) and E(i)(Zmin), V ar(i)(Zmin).

When we receive a new point cloud frame P(i+1), we
first rasterize the points inside the local mapping region and
extract features (in lower case) for this single frame. The
frame features x

(i)
f contain the number of points c(i+1), the

sum of height values
∑
z(i+1), the sum of the squared height

values
∑

(z2)(i+1), as well as the maximum and minimum
height values z(i+1)

max and z(i+1)
min of each grid. The empty grids

are filled with zeros. Next, the maintained point features x(i)

are transformed to be aligned with the current body position
and can be easily updated using the frame features x(i)

f based
on the relationship V ar(z) = E(z2)− E2(z). For instance,
to update the mean of the height values:

C(i+1) = C(i) + c(i+1), (1)

E(i+1)(Z) =
C(i) × E(i)(Z) +

∑
z(i+1)

C(i+1)
, (2)

and the variance:

E(i)(Z2) = V ar(i)(Z) + (E2)(i)(Z), (3)∑
(Z2)(i+1) = C(i) × E(i)(Z2) +

∑
(z2)(i+1), (4)

V ar(i+1)(Z) =

∑
(Z2)(i+1)

C(i+1)
− (E2)(i+1)(Z). (5)

The mean and the variance values of Zmax and Zmin are
obtained in the same way.

Our approach only pre-processes a single LiDAR frame in
each step and the maintained point features are updated with
simple rules. This achieves high memory and computational
efficiency on mobile devices. Although combining multiple
LiDAR frames suffers from sensory noise and odometry
inaccuracy, the maintained point distributions will converge
to stable states as the number of observations increases
assuming that the odometry drifts in an acceptable range in
a local mapping scenario. This also improves the stability of
neural map generation. One side effect is that the influence of
new frames will gradually decrease as the number of points
accumulates. Therefore, we append a final step of the update
that decays the point count C(i+1) of a grid with a factor γ
and limits the number of points with Cmax if there are new
points observed at that grid:

C(i+1) = min(Cmax, γC
(i) + c(i+1)), (6)

where we set the maximum point count Cmax = 100 and
γ = 0.90 to encourage the updates using new data frames.

D. Network Architecture

One of the major objectives in our network design is
to recover the detailed terrain structures with high-quality
edges because edges contain important terrain features that
are quite essential to improve the safety and efficiency of

downstream tasks. As explained in [7], traditional image
inpainting pipelines suffer from blurry or artifacts due to
the difficulties in recovering the high-frequency component.
In this case, they present EdgeConnect which sequentially
adopts an edge generator and an image completion net-
work to separately conquer the edge recovery and image
inpainting. We reference the architecture of EdgeConnect
while adopting multitask learning [45] for simultaneous edge
generation and elevation mapping. This assists the model
to maintain high-frequency components in the bottleneck
features while achieving higher inference speed compared
with the serial structure of EdgeConnect.

Fig. 3 presents the pipeline and network architecture of our
approach. The maintained point features x(i) are first passed
into convolutional layers for encoding, which are then down-
sampled before entering six ResNet blocks for feature ex-
traction. Each ResNet block contains a dilated convolutional
layer for larger receptive fields and a normal convolutional
layer for output. Two decoding blocks respectively up-sample
the bottleneck features and generate the binary edges ŷe and
height maps ŷh. Based on the concept of Bayesian learning,
the height map generation block also returns a log scale
variance map logσ as the reconstruction uncertainty, which
is integrated into the reconstruction loss in Section III-E and
jointly optimized with the height map. Two discriminators
with convolutional layers DE and DH are implemented to
guide the training of edge and height map generation. During
deployment, only the height map branch in the generator
is activated for fast inference. Because the network is fully
convolutional, it can deal with different input sizes to adapt
to the mapping requirements of various downstream tasks.

E. Training Objectives

During the training process, the edge generation is opti-
mized using a pixel-wise binary cross-entropy loss Lbce

e that
is clipped afterward for numerical stability:

Lbce
e = −

∑
(ye log ŷe + (1− ye) log(1− ŷe)) . (7)

For height map generation, we use the heteroscedastic model
in [43] to formulate our reconstruction loss Lrec

h and mea-
sure the data-dependent reconstruction uncertainty, where L1
norm is adopted due to its robustness to outlying residuals:

Lrec
h =

∑ √
2

σ
||yh − ŷh||+ logσ. (8)

Provided the prior information on structured urban ter-
rains, we introduce the unsupervised total variant loss Ltv

h

to obtain smooth planes and sharp edges in the generated
height maps:

Ltv
h =

∑∑
j,k

|ŷ(h) j+1,k − ŷ(h) j,k|+ |ŷ(h) j,k+1 − ŷ(h) j,k|,

(9)
where j, k are map indices in rows and columns.

Both the edge and the height map generation additionally
adopt the adversarial loss Ladv and the feature matching
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Fig. 4. Visualized examples of the elevation mapping experiments in simulations (the first row, 8m × 8m) and on real-world stairs (the second row, 3.2m
× 3.2m) using different approaches, where different colors indicate the height of steps. Our approach (N.D.E.M.) provides accurate dense elevation maps
with high reconstruction quality and can recover detailed terrain structures even under noisy and sparse observations.

loss Lfm calculated from the respective discriminators. The
generation adversarial loss is defined as:

Ladv =
∑

log(1−D(ŷ)). (10)

Similar to [7], the feature matching loss is calculated by
comparing the feature maps from multiple intermediate con-
volutional blocks D(l) in the discriminators:

Lfm =
∑
||D(l)(y)−D(l)(ŷ)||. (11)

The overall optimization objective of the generation model
is the weighted sum of all the above terms, where the
generated edge ŷe, height map ŷh, and log variance logσ
are jointly optimized:

Ltotal = wT [Lbce
e ,Ladv

e ,Lfm
e ,Lrec

h ,Ltv
h ,Ladv

h ,Lfm
h ]T .

(12)

IV. EXPERIMENTS

A. Implementation Details

1) Setup: We adopt CoppeliaSim [46] to build our en-
vironment and collect dataset for training and evaluation.
In simulation experiments, we generate maps as in Fig. 2
containing various terrain features to collect an evaluation
dataset containing around 2k data frames using the same
approach as illustrated in Section III-B. All the mapping
approaches are evaluated using 5m × 5m patches.

For real-world experiments, we specifically focus on the
mapping performance on stairs as it is one of the most chal-
lenging terrain reconstruction scenarios containing detailed
structures, which is frequently used for mapping evaluation
in [1], [6], [12], and the reconstruction quality of stairs can
largely affect the downstream tasks. We control a Jueying
Mini [44] quadrupedal robot to approach or walk up multiple
stairs with various heights and steepness. The robot receives
sparse point clouds at 10Hz from a RoboSense RS-LiDAR-
16 as the observation of the environment. The odometry
information of the robot is obtained using a modified version

of Normal Distribution Transform (NDT) [47] which contin-
uously compare the current LiDAR frame with a local point
cloud map containing 5 nearest frames. All the mapping
approaches are evaluated using 2m × 2m patches on stairs,
where the same network model of our approach is used as
in the simulation experiments.

To obtain the ground truth maps in the real world, we
collect dense point clouds using multiple point frames from
an Ouster OS1 LiDAR with 128 channels. The poses of
these frames are globally optimized using FAST-LIO [48].
Next, we adopt VDBFusion [33] which performs well with
dense input and accurate odometry information to reconstruct
the terrain structures. We finally rasterize the results as the
ground truth height maps. In each experiment, the relative
transformation between the ground truth and the generated
map origin is obtained by performing ICP on the initial
sparse observation frame and the dense point cloud.

2) Baseline approaches: We compare the mapping perfor-
mance of our approach (denoted as N.D.E.M.) with the CuPy
implementation of elevation mapping [6] which provides
the raw elevation maps (E.M.C.) and the results after an
inpainting filter (E.M.C.I.). We also adopt VDBFusion to
incrementally reconstruct the terrain using incoming sparse
observations and rasterize the results for comparison. To
show the improvement of introducing the uncertainty estima-
tion, we additionally train a model without using Bayesian
learning (N.D.E.M. w/o unc.).

3) Evaluation metrics: The mean absolute error (MAE)
is widely adopted to measure the accuracy of pixel values. In
addition, we introduce the mean gradient difference (MGD)
which is the averaged L2 norm of the gradient differences
between the ground truths and the generation results to
measure the capability of maintaining minute details at flat
surfaces and edges. As it is not quite meaningful to consider
the accuracy of grids in a heavily occluded region, we mask
a grid if the observation rate of a 1m × 1m patch around
it is less than 50% and obtain the masked results (mMAE
and mMGD) to measure the reconstruction accuracy. We also



TABLE I
ELEVATION MAPPING PERFORMANCE IN SIMULATION

mMAE ↓ mMGD ↓ PSNR ↑ SSIM ↑
E.M.C. 3.4350 0.7415 48.62 0.5619

E.M.C.I. 2.5650 0.5446 61.13 0.7441
VDBFusion 3.3989 0.6590 53.85 0.6303

N.D.E.M. w/o unc. 3.4329 0.4071 62.91 0.7259
N.D.E.M. 2.3327 0.3417 66.15 0.8005

calculate the peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) without applying the masks
to further evaluate the noise level and visual similarity.
For the approaches without a guarantee on dense mapping
(E.M.C. and VDBFusion), we use bilinear interpolation on
their results to fill in the empty region for calculation.

B. Simulation Results

Table I presents the mapping performance in the simula-
tion experiments. Our approach achieves the highest mapping
accuracy in height values and their gradients. Despite the
sensory noises and odometry drifts in the observations,
our approach can still recognize the terrain structure and
generate high-quality maps. The high structural similarity
also indicates the effectiveness of our GAN model in gen-
erating rational urban structures. By introducing Bayesian
learning that integrates the uncertainty estimations in the
reconstruction loss, our model (N.D.E.M.) achieves better
learning performance (compared with N.D.E.M. w/o unc.).
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Fig. 5. The percentage (orange bar plot) of different levels of error and
the corresponding uncertainty (purple curve). Our approach provides high-
quality mapping results that are accurate enough for various downstream
tasks. The uncertainty estimations further reflect the confidence of our model
on the generated maps.

To intuitively evaluate the accuracy of our approach on
map generation and uncertainty estimations, we plot the
percentage of different height error levels in simulations
and the corresponding averaged uncertainty values σ. The
histogram in Fig. 5 shows the percentage of mMAE values
among all the simulation results, which indicates that more
than three-quarters of the grids have an error of less than
2cm, and around half of the grids achieve an even higher
accuracy (< 1cm). The curve in Fig. 5 plots the change
of uncertainty over the unmasked errors considering all the
generated height values. It shows that the uncertainty values

TABLE II
ELEVATION MAPPING PERFORMANCE ON REAL-WORLD STAIRS

mMAE ↓ mMGD ↓ PSNR ↑ SSIM ↑
E.M.C. 4.2591 0.7090 73.32 0.7657

E.M.C.I. 4.1782 0.7364 72.77 0.7526
VDBFusion 3.5930 0.5455 74.98 0.8186

N.D.E.M. w/o unc. 2.8889 0.4222 76.16 0.8678
N.D.E.M. 2.3868 0.3858 77.48 0.8889

are close to being linearly proportional to the errors, which
successfully reflects the confidence of our model on mapping
results. The first row of Fig. 4 visualizes an example of
the mapping results in simulation, where we use 8m ×
8m patches containing multiple urban terrain features for
qualitative evaluation. Our approach provides high-quality
dense elevation maps in this complex scenario with detailed
features of various kinds of terrains.

C. Real-world Performance

Table II shows the mapping performance on real-world
stairs. Our approach still performs well with high accu-
racy while maintaining detailed terrain structures and high
structural similarity. The filtering-based inpainting approach
(E.M.C.I.) presents a worse performance than in simulation,
probably because the robot travels longer linear distances in
the real-world scenarios without looping back, which results
in lower observation rates and the filter-based approach
requires enough observations for satisfactory results. The
VDBFusion has an acceptable performance at the expense
of memory and computational efficiency as it incrementally
constructs a global map, which may introduce a heavy burden
to the mobile device.

We further visualize an example of the mapping results
in a real-world scenario on a stair. As shown in the second
row of Fig. 4, the traditional elevation mapping approach
(E.M.C.) is quite sensitive to noises and the occluded regions
are invalid. Although the inpainting filter assists to provide
dense mapping results, it fails to recover the map structures
from noises and the inpainting is inaccurate if there is not
enough observation. The VDBFusion successfully recon-
struct the stair structures for the first several steps. However,
it still cannot provide dense results and the performance is
unsatisfactory for the former steps. Our approach provides
high-quality dense mapping results with minute stair struc-
tures, while the version with uncertainty estimations further
improves the sharpness of edges.

D. Benefits to Downstream Tasks

We deploy a Python implementation of the proposed
elevation mapping framework on an Nvidia Jetson AGX
Xavier. The point cloud pre-processing and point features
update are accelerated using GPU through CuPy element-
wise kernels. It takes only around 1.2ms to preprocess a
point cloud frame from a LiDAR with 16 channels and
generate the network input. As the generation model is fully
convolutional, it can deal with input feature maps of diverse



sizes and generate maps of the corresponding shape. The
model takes around 24ms to generate 3.2m × 3.2m local
patches for locomotion as done in [1] and uses 75ms to
generate 12m × 12m maps for cost-optimal navigation on
complex terrains as required in [28]. The whole pipeline
performs elevation mapping at 10Hz, which achieves real-
time performance on the mobile computation platform and
saves computational resources for other robotic tasks.

We then conduct path planning on real-world stairs using
the approach in [28] which requires dense elevation maps
for optimal path planning on complex terrains. As shown
in Fig. 6, both E.M.C.I. and our approach provide online
dense elevation mapping when the robot approaches the stair.
However, E.M.C.I. cannot recover detailed stair structures
from extremely sparse observations, resulting in the failure
of the planner to find a valid path. Our approach successfully
reconstructs the stair once the LiDAR observes the steps.
The strong capability of our approach in reconstructing
urban terrain features at a glance assists the navigation and
exploration tasks to achieve better performance.

E.M.C. (raw) 

E.M.C.I. N.D.E.M. (ours)

Real-world Scene

Fig. 6. Our approach successfully recovers the structure of the real-world
stair at a glance, presenting strong capabilities in urban terrain reconstruction
with extremely sparse observation, which benefits various navigation and
exploration applications.

Adopting the uncertainty estimations in the downstream
tasks can help to ensure the safe and robust behaviors of the
robot. Fig. 1(c) visualizes the uncertainty values on the real-
world stairs. Our model returns a higher uncertainty at the
edges of the stairs than the flat surfaces, which can assist
the locomotion algorithms to step feet onto safe regions
and prevent slips resulting from the terrain reconstruction
inaccuracy. In addition, when there is a hole on the ground
(Fig. 7), the inpainting filter (E.M.C.I.) [6] just fills in that
region to make it a surface, resulting in potential danger
to navigation tasks. Although our approach cannot provide
accurate height values inside the hole due to occlusion, it
returns high reconstruction uncertainty that can inform the
navigation module for safe behaviors.

V. CONCLUSION

We propose a learning-based dense elevation mapping
framework for urban terrain reconstruction. It maintains high

Ground Truth E.M.C.I.

N.D.E.M. (ours, elevation layer) N.D.E.M. (ours, uncertainty layer)

Fig. 7. When there is a hole on the ground, rather than just fill in the hole
as done by the filtering-based approach, our mapping module returns high
uncertainty at the occluded region, informing the downstream tasks of the
potential danger.

reconstruction quality and accuracy in both simulation and
real-world scenarios. A GAN model is adopted to recognize
and generate the terrain features in the occluded regions
based on the prior knowledge of urban terrain. The proposed
data pre-processing method and the map generation model
show robust performance that can recover detailed terrain
structures from sparse and noisy LiDAR observations, while
also achieving high efficiency that can perform elevation
mapping on mobile devices in real-time. By introducing the
concept of Bayesian learning, the accuracy and generation
quality of our model are further improved. The provided
uncertainty estimations also have the potential to assist the
downstream tasks for safer and more robust performance.
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