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Abstract—The road network graph is a critical component
for downstream tasks in autonomous driving, such as global
route planning and navigation. In the past years, road network
graphs are usually annotated by human experts manually, which
is time-consuming and labor-intensive. To annotate road network
graphs effectively and efficiently, automatic algorithms for road
network graph detection are demanded. Most existing methods
either adopt a post-processing step on semantic segmentation
maps to produce road network graphs, or propose graph-based
algorithms to directly predict the graphs. However, these works
suffer from hard-coded algorithms and inferior performance. To
enhance the previous state-of-the-art (SOTA) method RNGDet,
we add an instance segmentation head to better supervise the
training, and enable the network to leverage multi-scale features
of the backbone. Since the new proposed approach is improved
from RNGDet, we name it RNGDet++. Experimental results show
that our RNGDet++ outperforms baseline methods in terms of
almost all evaluation metrics on two large-scale public datasets.
Our code and supplementary materials are available at https:
//tonyxuqaq.github.io/projects/RNGDetPlusPlus/.

Index Terms—Road Network Graph Detection, Imitation Learn-
ing, Autonomous Driving, Robotics.

I. INTRODUCTION

THE vector map of road elements, including high-definition
(HD) maps and standard-definition (SD) maps, is important

for autonomous vehicles. The road network graph is a kind of
SD map that records reliable position and topology information
of drivable roads. It is a fundamental component for downstream
tasks of autonomous driving, such as global route planning
and navigation [1], [2]. Autonomous vehicles can query prior
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road network graphs to find an optimal road path to reach
a destination, especially in complicated urban scenarios. In
addition, road network graphs can be applied in navigation tasks,
such as using Google maps to navigate ourselves in daily life.
Usually, a road network graph consists of vertices and edges,
where vertices represent key points of the road network (e.g.,
road ends and road intersections) and edges represent road
segments. Since road network graphs can cover a large area,
such as a city or even a country, manually annotating it is
time-consuming and labor-intensive, which severely increases
the cost and hinders the wide applications of autonomous vehi-
cles. Therefore, methods that can automatically detect the road
network graph are of great interest to the research community.

Since road network graphs only contain road-level infor-
mation, the detection for them does not require images with
very high resolution. So, aerial images obtained by unmanned
aerial vehicles (UAVs) or satellites [3] are sufficient for this
task. They are much cheaper and easier to access than the
images/point clouds collected by vehicle-mounted sensors. In
this paper, the road network graph is detected from large
aerial images at the resolution of 1m/pixel. There are many
existing works in this area, which could be classified into three
categories. The first category is based on semantic segmentation
[3]–[13]. These works first predict the semantic segmentation
mask of road networks and then extract the graphs by post-
processing. The second category of works has two stages and
can directly obtain the road network graph without complicated
post-processing [14]–[16]. These works first calculate graph
vertices by predicting the vertex heatmap, and then predict graph
edges by connecting obtained graph vertices. The last category
treats the graph detection task as a Markov decision process
(MDP) problem and proposes an iterative decision-making
algorithm to detect graphs [17]–[20]. Starting from predicted
initial candidates, these works train an agent network that can
detect the road network graph by iterations, which behaves in
a similar way to human experts. Among them, Road Network
Graph Detector (RNGDet) [19] proposes and trains a DETR-
like (Detection by Transformer) [21] transformer network to
track and detect the road network graph, which presents the
state-of-the-art (SOTA) performance so far. However, RNGDet
does not fully make use of multi-scale features extracted by the
CNN backbone, which restricts the further improvement of this
network.

In this letter, we propose RNGDet++, a novel approach that
directly detects road networks in the graph format. Compared
with RNGDet, RNGDet++ can better use the multi-scale fea-
tures of the backbone and presents superior results in our task.
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Besides, we add an instance segmentation head into the network
to better supervise the training, which enhances our robustness
and performance. RNGDet++ is trained by imitation learning.
We conduct comparative experiments and ablation studies on the
city-scale dataset released by Sat2Graph [15], and the SpaceNet
dataset [22]. Our contributions are listed as follows:
• We propose RNGDet++, a novel approach that can make

full use of the multi-scale features to effectively detect road
networks in the graph format.

• We add an instance segmentation head to the network,
which can better supervise the training of the network and
improve the performance.

• We evaluate our RNGDet++ and all the baseline meth-
ods on two large-scale public datasets. Our RNGDet++
presents superior results.

• We open-source our code and release the data at https:
//tonyxuqaq.github.io/projects/RNGDetPlusPlus/.

II. RELATED WORKS

A. Graph Detection of Simple Road Elements from Bird’s-Eye
View

Simple road elements refer to those with simpler topology,
such as road boundaries [14], [23], [24], road curbs [25], [26]
and road lanelines [27]–[29]. Under common circumstances,
these road elements do not have complicated merges, splits,
or intersections, thus the detection of the graph of these road
elements is less difficult. The input data of past works is bird’s-
eye view (BEV) images which are either aerial images [14],
[24], [25] or BEV images of the pre-built map [23], [27], [28],
[30]. Most previous works utilize a decision-making network
to iteratively detect the graph of target objects. Liang et al.
[23] proposed a CNN-based decision network to detect the
road boundary in BEV images obtained from the pre-built point
cloud map. Li et al. [28] further modified the algorithm to
handle simple topology changes of lanelines (e.g., split and
merge) on highways. Although the aforementioned approaches
could achieve satisfactory results in their specific detection
tasks, they cannot be adapted to the detection task of the
road network graph, since road network tends to have more
complicated topology structure, such as road intersections and
road overlapping (e.g., overpasses). Therefore, more powerful
and robust algorithms are demanded.

B. Road Network Detection from Aerial Images

With the fast development of aerial imaging techniques, high-
resolution aerial images from all over the globe could be easily
accessed nowadays. Thus, most past works on road network
detection take aerial images as input [3]–[13], [16]–[20]. They
could be classified into three categories: (1) Segmentation-based
approaches [3]–[13]. This category of approaches first predict
the semantic segmentation map of road networks, and then
conduct post-processing algorithms (e.g., skeletonization and
binarization) to extract the graph. However, they usually have
inferior topology correctness, especially when road intersections
or road overlappings are encountered; (2) Two-stage-graph-
based approaches [15], [16]. He et al. [15] proposed a two-
stage algorithm Sat2Graph to directly predict the graph of road
networks without complicated hard-code post-processing. The

authors first predicted the heatmap of road network graph ver-
tices and extracted vertex coordinates by processing algorithms.
Then, based on predicted graph vertices, they designed an
encoding scheme to demonstrate graph edges by projecting the
input aerial image into an 18-D tensor. A deep neural network
is trained to predict the 18-D encoding tensor of the input
image, and the graph edges could be calculated by decoding the
predicted encoding tensor. Sat2Graph presents quite promising
results, but it is not end-to-end trainable, which degrades its final
performance. Moreover, the isomorphic encoding issue [15] also
restricts Sat2Graph from having better evaluation scores; (3)
Iterative-graph-based approaches [17]–[20]. These approaches
convert the road network detection task to an MDP problem, in
which an agent is trained to detect the road network graph vertex
by vertex iteratively. It is believed that RoadTracer proposed by
Bastani et al. [17] is the first work belonging to this category of
approaches. RoadTracer trains a CNN-based decision network
to control an agent to explore the road network by iterations.
At each step, the network predicts the moving direction of
the next step, and the agent moves in the predicted direction
by a fixed distance. Inspired by RoadTracer, Xu et al. [19]
proposed a DETR-like network RNGDet to detect the road
network graph. RNGDet achieves the SOTA performance. At
each step, RNGDet directly predicts the coordinates of vertices
in the next step, so that RNGDet can have an adjustable step
length and handle road intersections with arbitrary numbers of
incident roads. However, RNGDet only utilizes the feature of
the deepest layer of the backbone, leaving multi-scale features
not fully used, which prevents further improvement.

C. Detection by Transformer

Compared with CNN, transformer [31] can better handle
variant-length input, and capture global relationships between
patches of the input image. Transformer-based detection frame-
work Detection by Transformer (DETR) is first proposed by
Carion et al. [21]. Compared with previous detection works,
DETR is more simple, effective, and end-to-end trainable.
Taken as input images, DETR directly outputs a fixed-length
vector encoding certain information about each candidate object.
By modifying the definition of the output vector as well as
the transformer network, DETR is adopted to handle various
different detection tasks, such as line segment detection [32],
road centerline detection [33], and road network graph detection
[19]. Even if most DETR-like approaches present satisfactory
results for a specific task, they only utilize a single feature layer
obtained by the backbone, while the multi-scale features are not
fully used. In this paper, RNGDet++ is proposed to conquer
this problem by using multi-scale features for both training and
inference to further enhance the final performance.

III. METHODOLOGY

A. Overview

In this letter, we propose RNGDet++ to detect the graph of
road networks for downstream autonomous driving applications.
Compared with RNGDet, RNGDet++ makes full use of multi-
scale backbone features and adds an instance segmentation head
to better supervise the training phase. Suppose the road network
graph is G = (V,E), where V is a set of key points of the road
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Fig. 1: System diagram of RNGDet++. In this diagram, RNGDet++ conducts single-step processing at time t. RNGDet++ mainly
consists of three modules: (A) Feature extraction module. With the RGB aerial image and the binary historical map as input,
this module first crops ROIs centering at vt, and then extracts multi-scale deep features of ROIs by two backbones. (B) Vertex
prediction module. Based on extracted multi-scale features, this module predicts two semantic segmentation maps S , I, vertices
in the next step {vit+1}Mi=1, as well as instance segmentation maps of all valid vertices {(SI)it+1}Mi=1. (C) Buffer maintenance &
graph update module. After obtaining vertices in the next step, RNGDet++ updates the graph G, and controls the agent to make
corresponding actions. The agent keeps repeating the above steps until the buffer is empty. When the buffer is empty, RNGDet++
stops and outputs the predicted road network graph G. This figure is best viewed in color. Please zoom in for details.

network as vertices and E is a set of road segments as edges.
Taken as input large aerial image tiles, the task of RNGDet++
is to predict the road network graph G. The system diagram of
RNGDet++ is displayed in Fig. 1.

RNGDet++ controls an agent to iteratively detect the road
network graph, whose current coordinates are denoted by vt,
where t is the current time stamp. Since the input aerial image
tile (i.e., I) is usually very large, such as 2048×2048 or 4096×
4096, considering limited computation resources, RNGDet++
processes a 128 × 128 region of interest (ROI) at one time.
To provide the agent with historical information, the rasterized
graph detected by RNGDet++ so far is recorded as the historical
map H . H is represented by a binary image whose size is the
same as that of I . H is obtained by rasterizing the vector format
historical graph into an image so that it can be processed by the
CNN backbone together with I . Centering at vt, the image ROI
(i.e., IR) and historical map ROI (i.e., HR) are cropped on I and
H , respectively. Taken as input IR and HR, RNGDet++ extracts
the multi-scale deep features by two ResNet [34] backbones.
The i-th feature layer is denoted by fi, and larger i indicates a
deeper feature layer.

With a feature pyramid network (FPN) [35], RNGDet++
predicts the segmentation of road segments (i.e., S) and the
segmentation of road intersection points (i.e., I). The DETR-
like transformer network makes full use of multi-scale backbone
features, and predicts coordinates (i.e., {vit+1}Ni=1) and valid
probability (i.e., {pit+1}Ni=1) of N vertices in the next step. These
predicted vertices are then filtered by removing those with low
valid probability pit+1 and RNGDet++ finally obtains M valid
vertices in the next step.

RNGDet++ maintains a first-in-first-out (FIFO) buffer saving
initial candidates, which are initial vertices to initialize the iter-
ation of the agent. These initial candidates may come from local
peaks of the global segmentation heatmap of road intersections,

or from breakpoints of the agent iteration. Based on the number
of valid vertices M in the next step, the agent takes different
actions to update the graph. If M = 1, there is only one vertex
v1t+1 in the next step, and the agent directly moves to v1t+1;
if M = 0, the agent pops a new initial candidate from the
buffer; if M > 1, it indicates that road intersections are met, so
the agent pushes all {vit+1}Mi=1 into the buffer and pops a new
initial candidate from it. After this, the agent crops new ROIs,
predicts new vertices, and repeats the aforementioned steps until
the buffer is empty.

B. Feature Extraction

Centering at the current coordinate of the agent (i.e., vt),
RNGDet++ crops IR and HR on the input aerial image and
the historical map. IR and HR provide the agent with visual
information and historical information, respectively. RNGDet++
extracts multi-scale deep features of these two ROIs by two
ResNet backbones. Each ResNet backbone can obtain four
layers of features denoted as fi, i ∈ (1, 2, 3, 4). A larger i
indicates a deeper feature layer. The extracted features obtained
by two backbones are added for feature fusion.

C. Multi-scale Feature Fusion

The main difference between RNGDet++ and the previous
RNGDet is that RNGDet++ can make use of the multi-scale
backbone features while RNGDet only utilizes a single feature
layer. Suppose the ResNet backbone obtains four levels of
features denoted by {fi}4i=1, and larger i indicates a deeper
level feature tensor. RNGDet only uses the deepest layer f4 for
vertex prediction while tensors at other levels are ignored, which
causes information loss. Inspired by UNet [36] and FPN [35],
the proposed RNGDet++ makes predictions based on features
extracted at all four levels, which can better capture the deep
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Fig. 2: Network structure of RNGDet++. RNGDet++ can make use of all four levels of features while RNGDet only utilizes the
4-th feature layer. At each layer, the transformer predicts an embedding tensor pei (blue box) of each input vertex query, and
outputs the feature tensor extracted by the transformer encoder efi (pink box). pe1 is fed to feed-forward networks (FFNs) to
predict the coordinates and valid probability. A multi-head attention layer (orange rectangle) is used to predict the attention map
ami (orange box) based on pei and efi. The predicted attention map is then sent to an FPN (red elements) to predict the instance
segmentation map. This figure is best viewed in color. Please zoom in for details.

feature of the input images to predict the vertex in the next
step. Please refer to our supplementary document for a detailed
comparison between RNGDet and RNGDet++.

Transformers are trained to process multi-scale features.
Taken as input fi and a vertex query, a shared transformer
predicts an embedding tensor pei. pe1 is sent to a feed-forward
network (FFN) for the prediction of one vertex in the next step.
Together with the output of transformer encoder efi, pei is used
to calculate the attention map ami. Both {ami}4i=1 and {fi}4i=1

are fed to an FPN segmentation head for instance segmentation
of road segments ahead. The network structure of RNGDet++
is shown in Fig. 2.

D. Vertex Prediction

With the extracted multi-scale deep features as input,
RNGDet++ outputs several predictions by different heads.

1) Semantic Segmentation: RNGDet++ predicts the semantic
segmentation maps of road segments (i.e., S) and road intersec-
tion points (i.e., I) with an FPN segmentation head. S helps
the network to learn the feature of the road network, while I
enables the network to be better aware of road intersections,
which improves the performance of RNGDet++ to detect road
networks with complicated intersections. The semantic segmen-
tation head only takes deep features of the input aerial image
as input and ignores that of the historical map.

2) Next Step Vertices: Besides multi-scale deep features, the
DETR-like transformer also takes N vertex queries as input.
The vertex query is a fixed-length trainable tensor, which could
be treated as a slot that the transformer can utilize to make
predictions. For each vertex query, the transformer predicts the
x-y coordinate of the vertex in the next step vit+1, a valid
probability pit+1, and an instance segmentation map of the ahead

Fig. 3: Visualization of the ground-truth instance segmentation
mask label (top right mask). When the agent vt (pink point) is
away from the right track, the instance segmentation head still
supervises the agent to capture the correct road information,
which improves the final performance.

road (SI)it+1. If pit+1 is larger than a threshold, the predicted
vertex is classified as valid and will be used to update the graph.
Suppose v∗ is the vertex projected from a vertex v onto the
ground-truth road network. (SI)it+1 is the road segment ahead
of vt that connects v∗t and (vit+1)

∗, which could better supervise
the training phase of the network and improve the reasoning
ability of the agent. An example is visualized in Fig. 3 to show
how we define instance segmentation labels.

Since there are N input vertex queries, the transformer
predicts N vertices in the next step. After filtering those vertices
with low valid probability, we finally have M valid vertices in
the next step. The visualization of RNGDet++ outputs is shown
in Fig. 4.
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color. Please zoom in for details.

E. Buffer Maintenance & graph update

During the iteration of RNGDet++, we maintain a FIFO
buffer to save initial candidates. An initial candidate is one
initial vertex that the agent starts the iteration. At the very
beginning, we predict the global segmentation heatmap of road
intersections by merging I of ROIs that cover the whole I , and
push all local peak points of the segmentation map into the
buffer as initial candidates. Then, we pop one initial candidate
from the buffer, crop ROIs centering at the newly popped initial
candidate and predict vertices in the next step. Based on the
number of valid predicted vertices M , we take different actions
to maintain the buffer and update the graph:
• M = 0. No road is ahead. Thus, the agent stops processing

the current road instance, and pops a new initial candidate
from the buffer to work on.

• M = 1. A single road is ahead. The agent directly moves to
vit+1(i = 1) and continues the iteration without operating
on the buffer.

• M > 1. Multiple roads are met (e.g., road split or road
intersections). The agent pushes all vit+1 into the buffer
as new initial candidates, and pops a new vertex from the
buffer to work on.

RNGDet++ keeps repeating the aforementioned steps until the
buffer is empty. If the buffer is empty, RNGDet++ completes the
detection task of the current input aerial image and outputs the
predicted G. The working pipeline of RNGDet++ is visualized
in module C of Fig. 1.

F. Training Data Sampling

The training of RNGDet++ relies on imitation learning. We
create an expert by using the breadth-first search (BFS) graph
traversal algorithm proposed in [19]. The expert can annotate
the road network graph vertex by vertex in the same way as
human experts. For better robustness, we add even-distributed
noise to expert trajectories.

Then the task of RNGDet++ is to mimic the behavior of the
expert and try to learn its policy. In our experiment, considering

the training efficiency, we use the behavior-cloning imitation
learning algorithm [37] to collect training samples and train
RNGDet++.

G. Loss Functions

For semantic segmentation maps S and I, binary cross
entropy loss Lseg is utilized. To alleviate the imbalance of
foreground pixels and background pixels, a larger training
weight is applied for foreground pixels.

Similar to DETR [21], for vertices in the next step,
RNGDet++ first matches predictions with the ground truth
by conducting the Hungarian algorithm. After matching, the
vertex coordinate is trained by L1 loss (i.e., Lcoord), and valid
probability is trained by cross-entropy loss (i.e., Lprob).

For each valid predicted vertex, we calculate the binary
cross entropy segmentation loss (i.e., Lins) to train the instance
segmentation head.

Finally, we have the training loss L = Lseg + αLcoord +
βLprob + γLins.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Dataset

In this paper, all experiments are conducted on the city-
scale dataset released in [15] and the SpaceNet dataset [22].
The city-scale dataset contains 180 RGB aerial images at
2048 × 2048 (pixels) captured from different cities across
the world. This dataset provides the ground truth for road
networks in the format of vector graphs. Following Sat2Graph
[15], we split the dataset into train/valid/test with 144/9/27
tiles, respectively. The SpaceNet dataset has 2551 RGB aerial
images at 400 × 400 (pixels). Compared with the city-scale
dataset, the SpaceNet dataset focuses on smaller regions. The
dataset is split into train/valid/test with 2042/127/382 images,
respectively. Images of both datasets have a 1m/pixel resolution.
These two datasets are large and have aerial images collected
from various scenarios, making them sufficient for training road
network graph detection approaches and conducting evaluations
comprehensively.

B. Baselines and Evaluation Metrics

We compare our RNGDet++ with previous SOTA approaches,
including four segmentation-based approaches and three graph-
based approaches.
• Segmentation-based baselines [8], [9], [15], [36]. Unet [36]

is a widely used classic semantic segmentation network,
and we adopt it to our task. Deep Road Mapper (DRM) [9]
and ImprovedRoad [8] conduct post-processing steps to re-
fine the road network segmentation results, which achieves
better performance. Deep Layer Aggregation (DLA) [38]
has a more powerful backbone, which is also utilized by
Sat2Graph [15] for feature extraction.

• Graph-base baselines [15], [17], [19]. RoadTracer [17] is
believed to be the first graph-based approach for the road
network detection task. Sat2Graph and RNGDet are two
SOTA approaches that can directly output the graph of road
networks.
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(a) Ground truth (b) Sat2Graph [15] (c) RNGDet [19] (d) RNGDet++

Fig. 5: Qualitative visualization on the city-scale dataset. (a) Ground truth road networks (Cyan lines). (b) Road network graph
detected by Sat2Graph. (c) Road network graph detected by RNGDet. (d) Road network graph detected by RNGDet++. For (b)-(d),
yellow points represent graph vertices and orange lines represent graph edges. For the visualization, it is found that RNGDet++
can output road network graphs with more accurate structure and correctness compared with previous works. This figure is best
viewed in color. Please zoom in for details.

All the approaches are evaluated with the metrics used in
[15], including TOPO [39] and average path length similarity
(APLS) [22]. Within the input aerial image, TOPO first ran-
domly samples seed vertices on the ground truth graph and the
predicted one, then compares the similarity of sub-graphs that
seed vertices can reach. This metric uses precision, recall, and
F1 to measure the average sub-graph similarity. APLS randomly
samples a vertex pair (v1, v2) on the ground truth graph and
projects them to the predicted graph as (v̂1, v̂2). Then APLS
compares the shortest distance between (v1, v2) and (v̂1, v̂2).
Smaller distance difference means better graph similarity. For
both metrics, larger scores indicate better performance.

C. Implementation Details

In our experiments, all ROIs are 128×128-sized. We run the
sampling algorithm to collect the training data, and finally obtain
around 400K samples to train RNGDet++. During training, the

loss weights α, β and γ are set to 5, 1 and 1, respectively.
Considering the road topology, we set the number of vertex
queries as 10, which is sufficient to handle common road
networks. RNGDet++ is trained for 50 epochs, with 10−4 initial
learning rate. All the experiments are conducted on 4 RTX-3090
GPUs.

In our experiments, all approaches are tuned on the vali-
dation set of the corresponding dataset. We aim to maximize
the TOPO-F1 score of the validation set by trying different
parameter settings of the evaluated approach and then use the
tuned network to infer the test set. APLS is not considered
during parameter tuning.

D. Comparative Experiments

Our RNGDet++ is compared with seven baseline approaches,
including four segmentation-based approaches and three graph-
based baselines. The quantitative results are shown in Tab. I.
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TABLE I: The quantitative comparison results. The best results
are highlighted in bold font. For all the metrics, larger values
indicate better performance.

Methods
City-scale Dataset SpaceNet Dataset

Prec. ↑ Rec. ↑ F1↑ APLS ↑ Prec. ↑ Rec. ↑ F1↑ APLS ↑

Seg-UNet [36] 75.34 65.99 70.36 52.50 68.96 66.32 67.61 53.77
Seg-DRM [9] 76.54 71.25 73.80 54.32 82.79 72.56 77.34 62.26

Seg-Improved [8] 75.83 68.90 72.20 55.34 81.56 71.38 76.13 58.82
Seg-DLA [38] 75.59 72.26 73.89 57.22 78.99 69.80 74.11 56.36

RoadTracer [17] 78.00 57.44 66.16 57.29 78.61 62.45 69.90 56.03
Sat2Graph [15] 80.70 72.28 76.26 63.14 85.93 76.55 80.97 64.43
RNGDet [19] 85.97 69.78 76.87 65.75 90.91 73.25 81.13 65.61

RNGDet++ 85.65 72.58 78.44 67.76 91.34 75.24 82.51 67.73

Qualitative demonstrations on the city-scale dataset are visual-
ized in Fig. 5.

Segmentation-based approaches first predict the pixel-level
semantic segmentation map of road networks, and then conduct
post-processing algorithms to extract and refine the graph of
road networks. From Tab. I, we can see that they tend to have
relatively good TOPO scores since TOPO mainly measures the
performance of the sub-graph detection, which focuses on the
locality. Since segmentation-based approaches directly optimize
pixels, they can achieve satisfactory results on pixel-level or
local topology-level metrics. However, they have a degraded
APLS score mainly because their global topology is not good
enough, which could be caused by incorrect detection of road
intersections or overlapped overpasses. Therefore, we claim that
segmentation-based approaches can detect the road network
graph with satisfactory local performance, but cannot present
good results on the global scale.

Different from the aforementioned segmentation-based ap-
proaches, graph-based approaches directly output and optimize
the graph of road networks. Thus, they usually have better
topology-level performance. Sat2Graph and RNGDet present
the SOTA performance among the baselines, and present supe-
rior results not only in the TOPO metrics but also in the APLS
metric. RNGDet++ is enhanced from RNGDet by utilizing
multi-scale deep features, and it has the best evaluation scores in
terms of both APLS and TOPO metrics. So, the superiority and
effectiveness of our RNGDet++ are demonstrated and verified.

E. Ablation Studies

We conduct ablation studies to verify the rationality of the
design of RNGDet++, including the instance segmentation head
and the multi-layer features. The quantitative results of ablation
studies are shown in Tab. II.

First, the instance segmentation head is removed from
RNGDet++. The instance segmentation head is used to predict
road segments ahead of vt, which can better supervise the
training of RNGDet++, making it better capture the spatial and
topology information of the road network graph. Based on the
evaluation scores, RNGDet++ without the instance segmentation
head presents inferior results. So, the importance of the instance
segmentation head is well demonstrated.

Then, to learn how multi-layer features affect the performance
of RNGDet++, we train RNGDet++ by only utilizing the
deepest feature layer (i.e., f4). From the evaluation results,

TABLE II: The quantitative results for the ablation study. The
best results are highlighted in bold font. For all the metrics,
larger values indicate better performance. We assess the instance
segmentation head (I) and the multi-scale features (M).

I M
City-scale Dataset SpaceNet Dataset

Prec. ↑ Rec. ↑ F1↑ APLS ↑ Prec. ↑ Rec. ↑ F1↑ APLS ↑

X 86.04 70.65 77.94 66.36 90.74 75.10 82.18 67.21
X 85.62 71.88 78.01 66.94 91.46 75.11 82.48 67.01
X X 85.65 72.58 78.44 67.76 91.34 75.24 82.51 67.73

TABLE III: The inference time cost. We report the time cost
(hours) used to infer all testing images.

Sat2Graph RNGDet RNGDet++

City-scale Dataset 2.51h 2.68h 3.85h
SpaceNet Dataset 1.15h 1.22h 1.88h

we find that RNGDet++ without utilizing multi-layer features
cannot reach as good results as the original RNGDet++. Thus,
the necessity of using multi-scale features is verified.

F. Limitations

1) Lower Efficiency: Since at each layer, the transformer
makes one prediction based on fused features, the time used for
the inference of RNGDet++ is relatively longer than RNGDet.
The inference time cost is reported in Tab. III. However, it
should be noted that our task (i.e., road network graph detection)
is an offline task, which is not sensitive to efficiency. Thus, con-
sidering the superior effectiveness performance of RNGDet++,
we think the relatively lower efficiency is acceptable at this
stage. We plan to further simplify the network and replace the
network modules with lighter structures.

2) Too complicated Intersection and Overpass: Even though
RNGDet++ outperforms previous works and presents the best
results, it still cannot handle too complicated road intersections
or overpasses very well. Moreover, since RNGDet++ is trained
by imitation learning, incorrect predictions in these scenarios
may affect the subsequent behaviors of the agent. We plan to
further optimize the training strategy, and use more powerful
backbones to improve the reasoning ability of RNGDet++.

V. CONCLUSIONS AND FUTURE WORK

In this letter, we enhanced the previous road network graph
detection approach RNGDet by adding an instance segmentation
head, and enabling it to leverage multi-scale features of the
backbone. The new novel approach is named RNGDet++. The
instance segmentation head could better supervise the network
training and improve the reasoning ability of RNGDet++. Be-
sides, RNGDet++ could utilize all layers of features obtained
by the backbone, which enables the network to capture multi-
scale information of the road network, so that RNGDet++
presents superior results. RNGDet++ is trained by the behavior-
cloning imitation learning algorithm. RNGDet++ and all the
baselines are fairly evaluated on two large publicly available
datasets. Compared with all baselines, RNGDet++ achieves
better evaluation scores, not only at the pixel level but also
at the topology level. In the future, we plan to further simplify
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the network structure for efficiency, and apply more powerful
backbones to better capture the features of road networks.
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