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Abstract— With the fast development of autonomous driving
technologies, there is an increasing demand for high-definition
(HD) maps, which provide reliable and robust prior information
about the static part of the traffic environments. As one of
the important elements in HD maps, road lane centerline is
critical for downstream tasks, such as prediction and planning.
Manually annotating centerlines for road lanes in HD maps
is labor-intensive, expensive and inefficient, severely restricting
the wide applications of autonomous driving systems. Previous
work seldom explores the lane centerline detection problem
due to the complicated topology and severe overlapping is-
sues of lane centerlines. In this paper, we propose a novel
method named CenterLineDet to detect lane centerlines for
automatic HD map generation. Our CenterLineDet is trained
by imitation learning and can effectively detect the graph
of centerlines with vehicle-mounted sensors (i.e., six cameras
and one LiDAR) through iterations. Due to the use of the
DETR-like transformer network, CenterLineDet can handle
complicated graph topology, such as lane intersections. The
proposed approach is evaluated on the large-scale public
dataset NuScenes. The superiority of our CenterLineDet is
demonstrated by the comparative results. Our code, supple-
mentary materials, and video demonstrations are available at
https://tonyxuqaq.github.io/projects/CenterLineDet/.

I. INTRODUCTION

High-definition (HD) maps are critical to autonomous
driving vehicles since they provide reliable information about
the static part of traffic environments. HD maps have many
layers that consist of various line-shaped road elements.
Lower-level layers consist of physically existing elements
(e.g., road boundaries, road curbs, and road lanelines), while
high-level layers have virtual elements (e.g., road lane center-
lines). All of the aforementioned HD map layers are recorded
in vector data format (i.e., graphs with vertices and edges).
Road elements in low-level layers of the HD map are usually
utilized to prevent potential collisions and assure the safety
of vehicles. High-level layers of HD maps can define the
path that vehicles can drive on. They contain all the topology
information of roads, thus they are important for downstream
tasks, such as vehicle planning, prediction and control [1]–
[3]. At this stage, creating the HD map of a target region
heavily relies on human annotators, which is labor-intensive,
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inefficient, and expensive. Therefore, an approach that can
automatically create the HD map with road lane centerlines
is of great interest to the research communities. Unlike low-
level road elements, road lane centerlines have complicated
topology structures (e.g., intersections) and severe overlap-
ping issues, thus making the detection of centerline graphs
challenging.

To the best of our knowledge, taken as input multi-
frame sequence collected by vehicle-mounted sensors, most
previous works only focus on the detection task in a single
frame and output rasterized results [4]–[9], which does not
meet the requirement for HD map building that demands
global vectorized detection results.

Even though some previous works seek to detect road
elements for vectorized map generation purposes, such as
road network graph detection [10]–[12], road laneline graph
detection [13], [14] and road boundary detection [15]–[19],
they rely on bird’s-eye view (BEV) aerial images captured
by satellites or UAVs, instead of data collected by vehicle-
mounted sensors that we discuss in this work.

To provide a solution to the aforementioned problems, in
this paper, we present CenterLineDet (i.e., Lane CenterLine
Graph Detector), a DETR-like [20] model that detects the
global lane centerline graph with vehicle-mounted sensors
for multi-frame and long-term HD map generation purpose.
Our CenterLineDet first fuses data collected by sensors in
multiple frames and projects it to BEV, then iteratively
generates the global HD map by a trained DETR-like
decision-making transformer network. CenterLineDet works
on sequential data and does not require pre-built point cloud
maps like some past works [14], [16].

The contributions of this work are listed as follows:
• We present CenterLineDet, an effective deep learning

approach that automatically creates the global HD map
of lane centerlines with sequential data captured by
vehicle-mounted sensors as input.

• We evaluate CenterLineDet on the large publicly avail-
able dataset NuScenes [21] to demonstrate the superi-
ority of our approach.

II. RELATED WORKS

A. Applications of Road Lane Centerline HD map

Road lane centerlines are virtual lines defined by humans
based on road topology, road connectivity, and traffic rules.
Thus, lane centerlines contain abundant information about
roads, which makes it critical for plenty of downstream
tasks of autonomous vehicles, such as motion prediction [1]–
[3], [22], and vehicle navigation (i.e., planning and control)
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[23]. Christensen et al. [24] proposed an autonomous driving
system for micro-mobility. The global planner and local
planner of this system heavily rely on the lane centerline
HD map. For the global planner, the centerline HD map was
used to calculate the shortest path to the destination since it
contained all the topology and connectivity information of
the road network. For the local planner and controller, the
vehicle was controlled to follow the lane centerline ahead
(the centerline HD map defines the path that vehicles can
drive on). Liang et al. [2] extracted features of lane centerline
HD maps by a graph neural network as prior information to
assist the motion prediction of objects on the road.

B. Road Element Detection with Vehicle-mounted Sensors

Most previous works resort to end-to-end perspective
transformation to detect road elements in BEV [4]–[9]. In
these works, with data collected by vehicle-mounted sensors
as input, a deep learning network is trained to fuse the data
and produce the probabilistic distribution of target elements
in the BEV. Li et al. [4] fused six vehicle-mounted cameras
together with a LiDAR, and trained an end-to-end deep
neural network to predict the BEV segmentation map of
road lanelines. Based on the segmentation results of the BEV
image, the authors vectorized the segmented lanelines by the
skeletonization algorithm to obtain the final road laneline
graph. Can et al. [7], [9] modeled the lane centerline by
B-splies, and predicted splines in the current frame by a
DETR-like network.

To the best of our knowledge, most aforementioned works
only focus on the detection task in a single frame [4],
[7], [9], leaving the problem of merging local maps of
multiple frames into a global map (i.e., long-term mapping
problem) unexplored. Moreover, their task is the detection of
simple road elements without complicated topology changes
or overlapping issues, such as road boundaries and road
lanelines [25]. To further improve the detection results of
road elements, some works resort to additional data like
OpenStreetMap (OSM) [23], [26] for enhancement. How-
ever, all the above works cannot well handle the following
problems of lane centerline HD map generation: (1) how to
handle complicated topology and overlapping issues, espe-
cially within the road intersection areas; (2) how to merge
detection results of each frame into the final global vector
HD map.

III. METHODOLOGY

A. Overview

In this work, we aim to detect the road lane centerline
graph for HD map automatic generation by using sequential
vehicle-mounted sensor data. The input data of our system
is a sequence of RGB images captured by six cameras (i.e,
I = {Ii}6i=1) and a sequence of point clouds obtained by
a LiDAR (i.e., P ). There are multiple frames in the data
sequence, and T denotes the current frame. The expected
output is the global graph of road lane centerlines in the
world coordinate system (i.e.,G = (V,E)), where V is a set
of lane centerline vertices, and E represents lane centerline

edges connecting corresponding adjacent vertices. Fig. 1
shows our approach overview.

CenterLineDet has two major steps: In the current frame
T , (1) predict the BEV heatmap of lane centerlines HTL by
perspective transformation, and (2) obtain the lane centerline
graph in the world coordinate system. After processing
all frames in the input sequence, the expected road lane
centerline graph is obtained. For the first step, we propose a
network named as FusionNet which enhances the original
HDMapNet [4] by combining the fully-connected neural
view transformer with inverse perspective mapping (IPM),
which can extract the lane centerline with better geometric
accuracy. Besides HTL , we also predict the heatmap of
candidate initial vertices HTI by FusionNet. To smooth the
inconsistency between frames, we fuse the predicted BEV
maps of neighboring frames by warping and averaging. The
fused BEV map of lane centerlines at the current time step
is denoted as H̃TL .

For the second step, we propose a DETR-like transformer
as the decision-making network to control an agent to
generate the lane centerline graph vertex by vertex. To start
the iteration, we use local peaks in HTI and endpoints in
the previous frame T − 1 as candidate initial vertices of
the current frame T , which is denoted by S = {sk}Kk=1.
Vertex vt is used to denote the current position of the agent.
After concatenating the fused BEV segmentation heatmap
H̃TL with the ego historical map ME , an ROI R is cropped
centering on vt as the local visual information for the agent to
make decisions.ME is a binary map recording the historical
trajectory of the agent in the ego vehicle coordinate system.
Taken as input R, the transformer predicts N valid vertices
in the next step as a set V = {vit+1}Ni=1. Based on N ,
the agent will take different actions to update the graph
iteratively. When the detection of the current lane centerline
instance is completed, the agent turns to another candidate
initial vertex sk and repeats the aforementioned algorithm.
Once S is empty, we switch to process the next frame of the
sequence. In the end, a graph in the world coordinate system
is obtained as the predicted HD map of road lane centerlines.

More details of CenterLineDet are provided in our sup-
plementary document.

B. Perspective Transformation

To facilitate our centerline graph detection, we first convert
the front-view scene from vehicle-mounted sensors to BEV.
The BEV centers on the ego vehicle, and its x-axis aligns
with the heading direction of the vehicle.

HDMapNet [4] applies neural view transformers to trans-
form the feature map FIi , i ∈ (1, ..., 6) from each perspective
image into the local BEV using fully-connected layers.
Then it aligns the local BEV feature map with the global
BEV feature map according to the extrinsic parameters of
each camera. The mapping φi between the perspective view
feature and the BEV feature can be denoted as:

Fibev = φi(FIi), (1)
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Fig. 1: CenterLineDet overview. Our proposed approach consists of two parts: perspective transformation and iterative
vectorization. The first part relies on perspective transformation networks (HDMapNet/FusionNet in our work) to predict
BEV heatmaps. The second part is the main contribution of this work, which trains a DETR-like transformer network to
control an agent to explore the scene by iterations, the trajectory of which is the global vectorized lane centerline graph.

where i is the index of the camera. In order to improve the
generalization ability and the geometric precision of the fea-
ture transformation, we propose to enhance the neural view
transformer with inverse perspective mapping (IPM). Based
on the projective geometry of the camera, IPM computes
a mapping between points in the BEV and the perspective
view, and obtains a BEV feature map with reliable geometric
priors. The FusionNet we proposed treats IPM as a shortcut
without learnable parameters and φi as a learnable residual
mapping function. The fused camera BEV feature map is the
summation of the two mapping results:

Fbev = max
i
{IPM(FIi) + φi(FIi)} . (2)

The fused BEV features are fed into a sequence of CNN
networks to predict a pixel-wise lane centerline segmentation
in the BEV.

C. Lane Centerline Graph Detection

In this section, we show how CenterLineDet detects the
lane centerline graph and how the proposed imitation learn-
ing algorithm generates expert demonstrations to train the
transformer network.

1) Inference: CenterLineDet is trained to mimic expert
human annotators to create the HD map of lane centerlines
vertex by vertex. It has a DETR-like transformer, a decision-
making network controlling an agent to create the HD map
of lane centerlines. At each step of the iteration, based on
the local visual feature, the agent predicts vertices in the
next step and takes corresponding actions to explore the
scene. The historical trajectory of the agent is outputted
as a prediction of the lane centerline graph. The inference
working pipeline of CenterLineDet is shown in Fig. 1.

To record the historical information which is critical for
the decision-making process of CenterLineDet, we maintain
a binary historical map ME . Each frame has a ME . ME

is in the ego vehicle coordinate system, which is directly
used to guide the decision-making of the agent, while MW

is in the world coordinate system to assure the consistency
of ME in neighboring frames.

At frame T of the input data sequence, after obtaining
HTL and HTI from the perspective transformation network,
we first find local peak points in HTI and endpoints in the
previous frame as a set of candidate initial vertices S =
{sk}Kk=1 to initialize the iteration of CenterLineDet. Then,
starting from a randomly selected sk, CenterLineDet controls
an agent to detect one lane centerline instance. Since there
exists inconsistency between the BEV segmentation result
of different frames, based on ego vehicle poses, we warp
and project the neighboring BEV segmentation heatmaps
HT−τL ∼ HT+τ

L to HTL . After summation and averaging,
the fused BEV heatmap in the current frame T is denoted as
H̃TL . Then, we concatenate H̃TL withME . After this, an ROI
R centering on the current vertex vt that the agent locates
is cropped, which contains sufficient visual information for
the transformer to make the decision. Taken as input R,
the transformer network outputs the coordinates and valid
probability of N̂ vertices in the next step V = {vit+1}N̂i=1.
Predicted vertex vit+1 with high enough valid probability is
accepted as a new vertex to update the graph. N̂ is the same
as the number of input vertex queries. Suppose we have N
valid predicted vertices, then the agent should take different
actions based on N to handle multiple topology structures
of the lane centerline graph. N = 0 indicates the end of
the current lane centerline in the current frame. vt under
such circumstances is treated as an endpoint, which can be a
candidate initial vertex in the next frame. The agent should
turn to work on another candidate initial vertex in S. N = 1
means the agent moves along a lane centerline without
branches, so the agent should keep moving to the next vertex
vit+1 for graph updating. N > 1 demonstrates complicated
topology structures are met, such as lane intersections, lane
splits, and lane merges. The agent should push all vit+1 into
S as new candidate initial vertices, and pop one sk from S
to work on.

When S is empty, we switch to the next frame T+1 of the
sequence to continue the detection task. We use endpoints in
the current frame (i.e.,N = 0) and local peaks in HT+1

I of
frame T +1 as initialized S for frame T +1. The candidate
initial vertices in frame T are visualized in Fig. 2. For
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candidate initial vertices that have been explored in the past,
the agent ignores them and removes them from S.

After all the frames of the input data sequence are pro-
cessed, the trajectories of the agent are outputted as the final
predicted lane centerline graph.

2) Expert Demonstration Sampling: In our experiments,
training data is generated by a proposed sampling algorithm
(i.e., expert in imitation learning). For better training effi-
ciency, in our experiment, behavior-cloning sampling algo-
rithm [27] is adopted. Based on breath-first-search (BFS),
the sampling algorithm traversals the ground truth lane
centerline graph G∗ vertex by vertex. At each position vt, it
generates one training sample. To enhance the robustness of
CenterLineDet, we add evenly distributed noises to the expert
trajectory during data sampling. The simplified diagram of
the sampling algorithm is visualized in Fig. 3.

During the sampling of the behavior-cloning algorithm,
the ground truth label of the current step is obtained by the
following equation:

V∗ = f(vt, G
∗,ME), (3)

where function f(·) can calculate the label vertices in the
next step based on the ground truth graph G∗ and historical
information. In our experiments, f(·) is modified from the
labeling algorithm proposed in [10], which can handle the
labeling task in graphs with complicated topology. To make
CenterLineDet more robust, we add random noises to V∗
when updating the graph.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

To evaluate and verify the superiority of our proposed
CenterLineDet, we conduct comparative experiments and ab-
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Fig. 3: Diagrams of expert demonstration sampling by behav-
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lation studies on the public NuScenes dataset [21]. NuScenes
is a large dataset containing data collected from various
different autonomous driving scenarios. This dataset provides
hundreds of data sequences collected by vehicle-mounted
sensors. Each sequence has around 40 frames with a 2Hz
frame rate. We select 698 sequences for training, and 148
sequences for inference. Since CenterLineDet is of two
stages and heavily relies on the BEV segmentation of per-
spective transformation, scene sequences that either have no
centerlines or perspective transformation has no reasonable
outputs are not included in the inference set.

A. Evaluation Metrics

To evaluate the performance of approaches from both
pixel-level and topology-level, we modify the metrics used in
[28] and [29] for our experiments. There are three pixel-level
metric scores, pixel-precision (P-Pre), pixel-recall (P-Rec)
and pixel-f1 (P-F1), to evaluate the prediction correctness
at the pixel scale. Suppose we have the predicted graph Ĝ
and ground truth graph G∗. For a vertex p in Ĝ, if there
exists one vertex q in G∗ whose distance to p is smaller
than a threshold δ, then p is regarded as a correct prediction.
Similarly, for a vertex q in G∗, if there exists one vertex p in
Ĝ whose distance to q is smaller than δ, then q is correctly
retrieved. The pixel-level metrics can be calculated based on
the following equations:

P-Pre =
|{p|‖p− q‖ < δ, p ∈ Ĝ,∃q ∈ G∗}|

|Ĝ|

P-Rec =
|{q|‖p− q‖ < δ, q ∈ G∗,∃p ∈ Ĝ}|

|G∗| ,

(4)

where | · | is the cardinality of a set. P-F1 is a combination
of P-Pre and P-Rec, which is equal to 2P-Pre·P-Rec

P-Pre+P-Rec .
There are also three metrics to evaluate the topology

correctness of the predicted graph, that is, topology-precision
(T-Pre), topology-recall (T-Rec) and topology-f1 (T-F1). For
each vertex q in G∗, we find that all vertices in G∗ that q
can reach within distance ε as a sub-graph G∗q . Then, we find



TABLE I: The quantitative results for comparison experi-
ments.

Approaches

Single-frame Multi-frame

Pixel-level ↑ Pixel-level ↑ Topology-level ↑

P-Pre P-Rec P-F1 P-Pre P-Rec P-F1 T-Pre T-Rec T-F1

HDMapNet [4] 0.805 0.649 0.709 0.714 0.665 0.685 0.517 0.354 0.400
TopoRoad [9] 0.408 0.566 0.461 0.410 0.526 0.477 0.360 0.349 0.352

FusionNet 0.813 0.658 0.719 0.726 0.674 0.695 0.518 0.356 0.403

CenterLineDet
+HDMapNet 0.785 0.675 0.711 0.700 0.713 0.699 0.768 0.403 0.511
+FusionNet 0.811 0.675 0.725 0.732 0.708 0.714 0.782 0.409 0.518

the vertex in Ĝ that is closest to q as p̃. The sub-graph Ĝp̃
denotes all vertices in Ĝ that p̃ can reach, whose distance
to p̃ is smaller than ε′. After calculating pixel-level scores
between the obtained sub-graphs G∗q and Ĝp̃, we have the
topology-scores:

T-X =

∑
q∈G∗ P-X(G∗q , Ĝp̃)

|G∗| , (5)

where p̃ is the closest point in Ĝ to q, and the letter X can
be Pre, Rec or F1.

B. Comparative Results

In this section, we evaluate CenterLineDet under differ-
ent settings and compare our CenterLineDet with baseline
models. To ensure fair and comprehensive comparisons, we
evaluate all approaches in both single-frame and multi-frame
detection tasks. Single-frame and multi-frame evaluation
results are shown in Tab. I. Sample qualitative results are
visualized in Fig. 4. Since CenterLineDet does not aim for
the single-frame task, we only report the pixel-level results
of single frames.

1) Baselines: To the best of our knowledge, very few past
works have exactly the same research scope as ours, that is,
detecting the graph of road lane centerlines in sequential
data collected by vehicle-mounted sensors. They either only
focus on single-frame detection tasks or resort to other format
input data (e.g., aerial image and OSM). Therefore, in the
comparison experiments, we create our own baseline models
based on past works:
• HDMapNet [4] (ICRA2022): HDMapNet is one of the

state-of-the-art approaches for road element perception
and vectorization with perspective transformation, but it
is mainly designed for the single-frame detection task.
To adapt it to our multi-frame detection task, we apply
the frame merging method proposed in [25] to construct
the world-level graph of lane centerlines.

• TopoRoad [9] (CVPR2022): TopoRoad is a DETR-like
model, which can predict lane centerlines as B-splines
in a single frame. We apply the same frame merging
method as the HDMapNet baseline to merge multiple
frames in the data sequence.

• FusionNet: FusionNet is proposed in this paper, which
enhances HDMapNet by combining IPM with fully-

TABLE II: The quantitative results for multi-frame ablation
studies.

Approaches
Pixel-level ↑ Topology-level ↑

P-Pre P-Rec P-F1 T-Pre T-Rec T-F1

CenterLineDet-No LiDAR 0.719 0.683 0.698 0.721 0.365 0.466
CenterLineDet-No Camera 0.631 0.576 0.605 0.620 0.338 0.394

CenterLineDet 0.732 0.708 0.714 0.782 0.409 0.518

connected neural view transformers to better learn the
geometric transformation. Similar to the HDMapNet
baseline, we first obtain single-frame heatmaps and then
merge them into the final multi-frame detection result.

2) CenterLineDet: We evaluate and show the results
of CenterLineDet with different perspective transformation
networks (i.e., HDMapNet and FusionNet). CenterLineDet
is trained by behavior-cloning.

3) Discussions: TopoRoad [9] outputs a noisy graph in
each frame, and it is almost impossible to merge graphs of
each frame into a consistent global one. From the results in
Tab. I, we observe that FusionNet gains enhancement than
past works, which proves the effectiveness of the fusion
of IPM and fully-connected neural view transformers. For
each perspective transformation model, the corresponding
CenterLineDet presents superior performance, especially in
multi-frame evaluations. This is because the agent controlled
by CenterLineDet can make more appropriate decisions for
graph detection. From visualizations in Fig. 4, it is observed
that CenterLineDet is the only approach that can distinguish
centerline instances, while baselines mess up instances that
causes incorrect topology.

C. Ablation Studies

In this section, we verify the importance of the input data
by respectively removing one of two sensors (i.e., camera
and LiDAR). The quantitative results are shown in Tab. II.
We can see that removing either LiDAR or cameras will
degrade the results, and our CenterLineDet without cameras
has much inferior performance. This indicates the importance
of data fusion, and camera images are the dominant source of
information for our CenterLineDet. Based on the aforemen-
tioned observations, the effectiveness of our network design
is demonstrated.

D. Time cost

We conduct experiments on a server with an i7-8700K
CPU and four RTX-3090 GPUs. All the four GPUs are
utilized for training, while only a single GPU is used during
inference. We report the time cost as follows:
• It takes one day to train HDMapNet or FusionNet.
• It takes 13 minutes to infer 5981 frames (148 scenes)

for HDMapNet or FusionNet.
• It takes around 5 hours for behavior-cloning sampling,

and it takes one extra day to train CenterLineDet with
behavior-cloning sampled data.



(a) GT (b) HDMapNet [4] (c) TopoRoad [9] (d) FusionNet (e) CenterLineDet

Fig. 4: Qualitative visualizations. Different colors represent different road centerline instances. CenterLineDet is the only
approach that can detect and distinguish multiple instances. All baselines mess up different instances, which leads to incorrect
topology, especially in the intersection area. For better visualization, graphs are widened but they are actually of one-pixel
width. Please refer to the supplementary document for additional visualizations. Please zoom in for details.

• It takes overall 41 minutes for CenterLineDet to infer
5981 frames (0.41s/frame=2.43Hz, which is sufficient
for Nuscenes with 2Hz key frame rate). Besides, it
should be noted that CenterLineDet does not need to
work in an online manner (i.e., HD map generation task
is not an online task).

E. Limitations
This paper claims two limitations of the proposed ap-

proach: (1) CenterLineDet is restricted by the perspective
transformation performance. CenterLineDet consists of two
stages and cannot be trained in an end-to-end manner, which
may degrade the network performance. If the perspective
transformation module presents inferior BEV heatmaps, Cen-
terLineDet would be negatively affected; (2) Although Cen-
terLineDet presents the best performance in the experiments,
it still cannot handle too complicated intersection areas
very well. We aim to solve this problem by applying more
powerful perspective transformation models.

V. CONCLUSIONS AND FUTURE WORK

We presented here CenterLineDet to automatically gener-
ate lane centerline HD maps using vehicle-mounted sensors.

The key problem is to detect the lane centerline graph
with complicated topology. Taken as input data sequences
from multiple sensors, CenterLineDet first predicts the BEV
segmentation heatmap of lane centerlines. Then, a decision-
making transformer network is trained to control an agent to
explore the scene to create the lane centerline graph vertex by
vertex. After processing all frames in the input data sequence,
the trajectory of the agent was outputted as the lane centerline
graph to generate HD map. The effectiveness and superiority
of CenterLineDet were demonstrated by the comparative
experiments on the nuScenes dataset. In the future, we plan
to adopt more powerful perspective transformation models
and make CenterLineDet end-to-end trainable.
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