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Abstract—The generalized rigid registration problem in high-
dimensional Euclidean spaces is studied. The loss function is
minimized with an equivalent error formulation by the Cayley
formula. The closed-form linear least-square solution to such a
problem is derived which generates the registration covariances,
i.e., uncertainty information of rotation and translation, provid-
ing quite accurate probabilistic descriptions. Simulation results
indicate the correctness of the proposed method and also present
its efficiency on computation-time consumption, compared with
previous algorithms using singular value decomposition (SVD)
and linear matrix inequality (LMI). The proposed scheme is then
applied to an interpolation problem on the special Euclidean
group SE(n) with covariance-preserving functionality. Finally,
experiments on covariance-aided Lidar mapping show practical
superiority in robotic navigation.

Index Terms—Covariance analysis, navigation, point-cloud
registration, rigid transformation, robotic perception.

I. INTRODUCTION
A. Background and Related Works

OINT-CLOUD registration has been extensively
developed in the past few decades and widely employed
in various fields, including robotic perception, automated
reconstruction, computer-aided design (CAD), etc. [1]-[3].
The points can either be measured by a 2-D/3-D laser
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scanner, or by a time-of-flight (ToF) sensor, or even by scene
reconstruction from monocular/binocular cameras [4], [5].
The basic purpose of the point-cloud registration is to find
out the rigid/affine/nonrigid transformations between two
measured point sets, while most registration problems can be
considered as locally rigid ones as much as possible [6], [7].
By virtue of this aim, many engineering processes require the
point-cloud registration, including spacecraft attitude deter-
mination, autonomous navigation, simultaneous localization
and mapping (SLAM), etc. [8]-[12]. Thus, the principle
of point-cloud registration is to seek the most appropriate
correspondences along with an optimal transformation to
match the two-point sets. Note that the point numbers of the
two sets do not have to be consistent, so such a problem is
usually nonconvex during matching. For rigid point-cloud
registration, the best correspondences and the optimal rigid
transformation are usually unified with the iterative closest
point (ICP, [13]). In ICP, the correspondences can be figured
out iteratively by means of brute-force searching or aided
by an kD tree, with a given transformation guess. The rigid
transformation is often obtained via closed-form solutions,
e.g., singular value decomposition (SVD, [14], [15]), eigen-
decomposition (EIG, [16]), dual quaternion method [17],
etc. [18]. ICP is practical and efficient but suffers from local
minima during iterations. Therefore, some efforts have been
paid to find the global optimum of such a problem, e.g.,
the Go-ICP [19]. Mainstream ICP variants mainly deal with
the 3-D registration case while the high-dimensional one is
actually needed for some other cases, such as the localization
of sensor networks [20], [21].

The main work presented in this article is to show
the closed-form solution and its covariance analysis of
such a high-dimensional rigid registration problem. To
describe the shape of rigid transformations, special orthog-
onal groups, and special Euclidean groups are usually
invoked [22], [23]. Studying the control problems based on
such manifolds has become popular in recent years, involv-
ing some results on feedback control laws, optimization
hull, motion planning, etc. [24]-[26]. The specific problem
of n-dimensional rigid registration can be solved via
the SVD or linear matrix inequality (LMI) [27], [28].
However, as both these methods suffer from the existence
of high nonlinearity, a covariance analysis guaranteeing reli-
able quality control may be not feasible at the current
stage.
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The engineering background for the presented study is
that, apart from those nonlinear observers on the 3-D special
orthogonal groups [29], [30], higher dimensional registration
techniques have been ultilized by the authors in [31] to solve
the robotic hand-eye calibration between the robotic gripper
and attached camera, of the type AX = XB with A, B being
known and X being unknown. It is revealed that a mapping
from 3-D special Euclidean group to the 4-D special orthog-
onal group will be of convenience in solving such problem.
In the 4-D case, the authors propose the unit octonion method
for point-cloud registration but this is not extendable regarding
registration with arbitrary dimensions. As hand-eye calibra-
tion has received extensive research during the past several
decades [32]-[36], the proposed n-dimensional case may bene-
fit future related works. It is also noticed that, for the 3-D case,
Barczyk et al. [37] have derived the closed form of the ICP
matching covariance and the results have been later fused with
the inertial measurement using an invariant Kalman filter. As
mentioned above, the 3-D and 4-D cases are all specific ones
that can not give mandatory information for the extension to
n-dimensional ones. Therefore, the main challenge confronted
is to find an efficient universal parameterization approach for
the registration on the n-dimensional Euclidean space.

B. Contributions

Following above problems in n-dimensional registration,
this article proposes a new formulation as a linear solution.
Major contributions are listed as follows.

1) Based on the Caylay transformation, linear results

regarding the registration problem have been derived.
The developed method provides a new perspective other
than existing ones like SVD.

2) Computational burden has been significantly decreased
by simplifying related computation steps via specific
matrix manipulations. With this technique, the online
efficiency of the algorithm has been improved.

3) The uncertainty descriptions of the derived solution are
also derived which gives the quantization of the quality
of registration with given noisy point clouds.

Following these contributions, through simulation and
experimental results, we also show the advantages of the
proposed method in algorithmic implementation and effi-
ciency, compared with representatives, such as LMI, SVD,
and other applications.

C. Outline

This article is structured as follows: Section II presents
the problem formulation and introduces our proposed linear
solution and covariance analysis. Section III consists of exper-
iments, results, and comparisons while concluding remarks are
drawn in Section IV.

D. Notations

The n-dimensional Euclidean vector space is described with
R”". We use R"™™ to denote the real space containing all matri-
ces with row dimension of n and column dimension of m.
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The identity matrix has the notation of I and owns a cer-
tain size according to the context. X' and X! mean the
transpose and inverse of a given matrix X, respectively, in
which the inverse exists when X is square and nonsingular.
We use tr to represent the trace of a square matrix. The adj
denotes the adjoint matrix. ||-|| stands for the /» norm in the
Euclidean space such that ||x|| = ~/xTx for any given col-
umn vector x. rank(X) depicts the row rank information of X.
For the 3-D Lie algebra, the special orthogonal group SO(3)
contains all the orthonormal rotation matrices in R3*3. It is
extended to n-dimensional Euclidean space with the SO(n)
whose identity is expressed with X € SO(n) = XX' =
XTX =1, det(X) = 1. The s0(3) contains all skew-symmetric
matrices xx from any 3-D vector x = (x1, x2,x3) T such that
the cross product between any two 3-DI vectors x, y is equiva-
lent to x Xy = x,y = —y,x. The generalization of s0(3) from
3-D space to the n-D space is so(n). Note that any element on
the group so(n) is a skew-symmetric matrix and can be expo-
nentially mapped to a unique rotation matrix on SO(n). With
a ([n(n — 1)]/2)-D vector x = [x1, x2, .. .,x([n(n_l)]/z)]T, the
associated skew-symmetric matrix is defined in (1) so that
Xy € so(n)

0 —Xuwn Xnwony_y o (=D" x23 (1) x
* 0 _X@fZ Tt (_ 1 ))173x2n—4 (_ 1 )n72x11—2
o =|* *
% R . —Xn X2
* * 0 —X1
* * * * 0

)

The inverse map, i.e., the wedge operation A from the n x
n skew-symmetric matrix to the ([n(n — 1)]/2)-D vector is
denoted as x}, = x

II. HIGH-DIMENSIONAL REGISTRATION: SOLUTION
AND COVARIANCES

A. Problem Formulation

The generalized rigid registration problem can be charac-
terized with the following optimization [13]:

N
argmin L = Z wiHbi —Rr; — t”2 3)
ReSO(n) teR3 Py

in which R is the n-dimensional rotation matrix; ¢ repre-
sents the Euclidean translation vector in the R”. The rotation
and translation, together, namely, the homogeneous transfor-

mation € SE(n) in the special Euclidean group

R ¢
0 1
SE(n), relates N vector pairs {b;,rili=1,2,...,N} in the
body frame b and reference frame r together. Here, the
relationship between vector pairs is expressed with the normal-
ized weight w;, such that Zf\;l w; = 1. The weights actually
denote the uncertainty characteristics of the data to be aligned.
However, in practice, when there are large amount of points,
e.g., for the Lidar mapping, there is no criteria to deter-
mine the weights. In that case, the weights are computed
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equally as w; = 1/N. The problem (3) will always be con-
vex by introducing the unit quaternion for representation of
R in SO(3) [38]. The uniqueness of the problem can be
found in [15]. The problem is a least-square one and can
be solved with many techniques [39]. When the dimension
increases, the quaternion will be no longer feasible to give
adequate description of rotations. Let us think about the
general rotation representation and factorization that is inde-
pendent of the dimension n. For any orthonormal rotation
matrix with dimension of three, one has RE = &, where
£ = (&1, &, &) is called the eigenaxis of R. While for the
rotation in SO(3), the Rodrigues formula can be accordingly
derived as R = cos 0 + (1 —cos 0)EE | + sin 0& ., where 6 is
the intermediate rotation angle about the eigenaxis &.

The high-dimensional extension of Rodrigues formula is in
a sophisticated form since the cross-product of vectors are
only proven to exist in three and seven dimensional Euclidean
spaces [40]. Moreover, the Rodrigues formula is nonlinear
and can hardly offer convenience for rotation computation.
However, the Cayley transformation, i.e.,

R=I+G)'U-G) 4

with G denoting an n-dimensional skew-symmetric matrix,
always holds for the rotation factorization. Such technique has
been invoked for solving Wahba’s problem that is a special
case of (3) with n =3, ¢ =0, and ||b;]| = ||r;|| = 1 forming a
spacecraft attitude estimator called OLAE [41]. With different
data dimensions n > 3, the problem significantly varies. The
matrices I + G and I — G are often invertible, but will suffer
from singularities when all Euler angles approach +m, which
is a special case. However, in engineering, there is almost no
such a coincident case for n-dimensional registration, because
of the noise of the input data. Therefore, we assume here
that I + G and I — G are strictly invertible. In the following
parts, we are going to present the proposed linear solution and
associated covariance analysis.

B. Proposed Linear Solution

Let us define the centers of the mass of the point sets as

N N
b= Zwibia r= Zwiri )
i=1 i=1

with b;, r; € R". For large numbers of points, without loss of
generality, the covariance of each point can be unified with
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Y = Xjp, = X,,. Then the rotation-only problem is converted
to the following optimization:

)bi—E—R(r,-—f)Hz. ©6)

N
argmin £ = w;
ReSO(n) ; l

With the virtue of (4) and defining Ei =b;, — 5, rio=r—r,
and the error vector e; = b; — RF;, one always expect the error
to be zero, such that

e=bi—I+G)'I-GF=0. (7)
The right item can be further expressed as

bi = I+6G)~'U-GF = T+Gb; =T - GF
= G(I;i + ;'i> =7 — I;,'. ®)
Note that in [41], the above equation can be further derived
to

(l;i + ;:i) Xg = l;i —F 9

where G is replaced by G = g, € so0(3). The equation
can be obtained by symbolic manipulation using MATLAB,
Maple or Mathematica. That is to say the minimization (6) is
transformed into

N
argmin £ = ZWiHGxi —d;|)?

(10
G'=—G i=1
where
xi =bi+F;
d,~=?,»—l;,-. (11

For the n-dimensional G, we need to determine the n(n—1)/2
items inside G such that

G(g) =g

0 g1 22 gn—1
—81 0 &n 8n-3

| = gn ' :
: 0 Znn—1)

2

—8&ui—1  —&n-3 ~8utn) 0

(12)

withg = [g1, 22, ..., g([,,(n,])]/z)]T and G being a linear func-
tion of g. It can be noticed that although the linear mapping g

Xi,2 Xi3 Xi 4 0
N | —Xia 0 0 Xi3
P4(xl) - O —Xi,l 0 —Xi,2
0 0 —xl-,l O
Xi2 Xi3 Xi4 Xi,5
—Xi1 0 0 0
Ps(x;) = 0 —Xi 1 0 0
0 0 —Xj 1 0
0 0 0 —Xi 1
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Xi,3
—Xi,2

0
Xi,4 0
Xi 4
—Xi3
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0 —Xi2 0 —Xi3  —Xi4
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is also on so(n), it does not require the specific arrangements
of elements and signs that are needed inside the mapping
from G to g, in (1). Therefore, gg is more flexible than
g, in representing G (see skewdec command in MATLAB
software for some details). Then for arbitrary Gx; in (10),
we can always find a corresponding matrix P,(x;) satisfying
G(g)x; = P, (x;)g. This can be achieved via many concurrent
mathematical tools. For instance, in the MATLAB, we can use
equationsToMatrix function to obtain instant expression
of P;. The optimization (10) is then solved by

)
L _
og

N N
=" Y wiP @)P(x;) — Y wid{ P(x)) =0
i=1 i=1

N N
= Y wP @)Px)g =) wP'(x)d.  (13)
i=1 i=1

It is obvious that the solution is linear and it follows:

g:H_lv (15)

with
N
H=> wP(x)Px)
i=1

N
v=> wP'(x)d, (16)
i=1

Then, the rotation is reconstructed by

R=(I+gs)  (I-gs)-

As a convention, the translation can be determined with ¢ =
b — Rr [14].

Now that we have already known P(x;) € R*(n(=D1/2),
The time complexity of the matrix inversion varies from
On*3®) to O(®) using the optimized Coppersmith—
Winograd method and the Schoolbook multiplication, respec-
tively, [42]. The matrix H € Rn(=DI/2)x(In(r=D1/2) 1|
consume huge load of time to compute its inversion with
increasing order n — +o00. Thus, the emerging task is to fig-
ure out a faster matrix inversion of H by dimension reduction
through the following properties.

a7
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C. Fast Matrix Inversion

The diagonal zero elements of G make P(x;) a matrix with
row-rank of n — 1, which also leads to

rank[PT(xi)P(xi)] —n—1. (18)

With increasing point numbers, we have

N
rank(H) < Y rank[wiPT (xi)P(xi)] —Nan—1). (19)

i=1

That is to say only a few pairs of points can hardly obtain
accurate registration result of R and ¢. This requirement is
easy to be satisfied as the point numbers are usually far larger
than the dimension so as to guarantee the global observability
of parameters to be estimated.

Here, we define P, (x;) as the P(x;) for n-dimensional reg-
istration problem. By examples we can see the contents of
P, (x;) with various dimensions in (2), shown at the bottom of
the page. Then, we can summarize the generalized form for
n-dimensional case, i.e.,

ny,. T
2%
n
3%
Py(xi) = | —xiaf noiX (20)
—xiol
_xi,nI
where “x; denotes the partial column vector consisting of

J
sequential components of x; from index j up to index k. With

the aid of explicit form of matrix such as those in (2), one can
immediately infer that PI (x;)P, (x;) takes following form:

S
S>

P} (x)P,(x;) = 21

Sn72

in which S1, S, ..., S,—2 are symmetric positive semidefinite
matrices. Taking the fourth-order transformation as example,
the matrix manipulation is shown in (14), shown at the bot-
tom of the page. Moreover, for S we have the following
eigenvalues:

2 2 ;
Xip T Xy Xi2Xi3 Xi2Xi4 |
2 2 I
Xi,2%i 3 X+ X3 Xi3Xi4
2 '
Xi2Xi 4 Xi3Xi 4 Xip+Xig
S1 l
T, \p o\ | T s S A S
Py (x)Py(x;) = P Xip T X3 x,,3xl,42 ; (14)
OXi3Xi4 o X T Xy
S .
i a ixz 3 + Xia
| PS8
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n
_ 2 2 2 2
)“Sk —xi,k,xi,k,...,xi’k,in’j (22)
j=k

(n—k) eigenvalues.

Then, Sy is positive semidefinite as all its eigenvalues are non-
negative. Therefore, the sum H is also symmetry-preserving
and positive semidefinite and takes the summed form of (21).
Invoking the Sherman—Morrison—Woodbury formula

—1
A+BDC) = A~ —A—lB(D—l + CA_IB) cA™ (23)

where A, D, and D!+ CA~'B are nonsingular matrices, we
have

(¢ »)
B (A-BD7'C)”
~|-p'c(a-BD"'C)”

Notice that

: —A‘lB(D—CA_lB)1:|

(D—cA'B)"”!

(D — CA‘IB>71 —p! +D‘1C<A - BD_IC)ilBD_l (24)

we actually need to pay more attention to solving A=, D~!,
and (A —BD~'C)~'. Here, A~! and (A —BD~'C)~! have
the same dimension and require the complexity of O[(n— 3.
Empirically, we found that all Sy matrices for k =1, 2, ... are
strictly invertible when the problem (4) is valid, i.e., 1) the
measurement number N is greater than the unknown degree
n(n — 1)/2 + n and 2) not all the points are coplanar or

collinear. Then following the mapping of H to e

B
c D)’ v
can see that D here is also in the form of H, i.e., the sum
of multiple (21). In this way, H can be iteratively built up by
smaller matrix blocks and the final computation comes from
these blocks.

In numerical calculation of H~!, H may always suffer from
very tiny or very large determinant values. At such time, the
inverse of H will be influenced by the numerical loss. Using
the above proposed fast blocked-matrix inversion, we may find
out that A™', D™', and (4 — BD~'C)~! are required. While
seen from (21), one can obviously notice that A and D are
positive semidefinite. That is to say in engineering tasks, with
sufficient point numbers, A, D will be exactly positive definite
and this solver is able to obtain much more robust blocked
inversions. By taking matrix manipulations including addi-
tion and multiplication, H~' can be accurately recovered. This
shows the better robustness of this approach than conventional
numerical schemes for computing H™'.

D. Singularity Avoidance

In (16), each independent component P’ (x))P(x;) is sin-
gular due to the rank shown in (18). However, with the sum
of heterogeneous matrices P (x;)P(x;), the matrix gradually
reaches to full-rank state, which has been described in (19).
When some extreme cases occur, H will be singular and the
proposed fast inversion in the last section will also be trivial.
The extreme case mainly covers.
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1) Lack of mandatory point numbers [10].

2) Collinear reference vectors [43].

3) Dominant weights [44].
Each of these factors shown above will lead to numerical
problem such that the matrix H is rank-deficient. In fact for
almost all extreme cases, the determination of rotation would
be meaningless as the observability of angles has been sig-
nificantly distorted. Studying the extreme performance for the
proposed method is to prevent the computation from numerical
crash, e.g., the existence of not-a-number (NaN). For instance,
when H is singular, the determinant will be very small which
generates very large values of H™ ' by

H™' = adj(H)/ det(H). (25)

Then, inserting the large values into (4) results in another huge
numerical loss. Under such circumstance, we should replace
the original inversion with the pseudo inverse [45] g = Hv.
Here, HT is the Moore—Penrose generalized inverse of H.

E. Covariance Analysis

There are some assumptions for us to derive the covariances
of the obtained results in previous sections.

1) The measured points from one point set contain no

correlated covariance between each other.

2) The two point sets for registration have independent

noise distribution.

These assumptions are based on the fact that current Lidar
sensor outputs huge loads of points, such as Velodyne VLP-
16 Lidar can have 300000 points per second. Thus, one can
hardly describe individual correlation inside points. We use (-)
to represent the operation of expectation and § is employed to
represent an perturbed infinitesimal induced by input noises
from b; and r;. In this section, high-order (second-order or
higher) infinitesimals are ignored for their tiny impacts in the
error propagation. Then, the difference of H is

N N
SH =) wiPT (x; + 8x)P(x; + 8x;)) — Y wiP (x)P(x;)
i=1 i=1
_ ﬁ: ", [PT (6x)P(x:) + P (x)P(8x:) ]
£ M| +PT (6x)P(5%)

N
~ 3w PT@xP@) + PTaPOx)|

(26)
i=1
Note that for each subitem J;, it follows that:
Ji=wi[PTGx)P@) + PT@)PGx) | @D
It can be decomposed linearly in dx;, such that
Ji= [Kl(xi)éxi, Ky (x)dx;, . .. ,Kn(n;l) (e)éxif.  (28)
For instance when n = 4, the matrices are
2)61',1 2)61‘,2 0 0
0 Xi3 Xi,2 0
N — s 0 Xi 4 0 Xi2
Kl (xl) - Wl _xl’3 0 _xl’l 0
—x,~_4 0 0 —x,;l
0 0 0 0
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0 Xi3 Xi2 0 X,
2xi1 0 2x;3 0 N _@
ool 0 0 x4 X3 +2 | X &Kt | Zy
K> (x;) = w; Xi2 Xi1 0 0 i—1 I j=1
0 0 0 0 y [
—Xi 4 0 0 —Xi1 X Z Z ngjT(xi)
0 x4 0  xia =H"| =] = HY (32
0 0 Xi 4 X3 N n(’l;l) T
21 0 0 2uy —X | X gk |{oxiovT)
Ki(x;) = w; 0’ 0 0 0’ i=1 i Jj=1
n(n—1)
Xi2  xij 0 0 N | "
Xi3 0 Xi1 0 —(5xi5VT> Z:l zi ng]T(xi)
= J=
—Xi,3 0 —Xi,1 0 . .
Xi 2 Xi 1 0 0 in which
V| O 0 0 0 3, = <5v8vT>
K4(xl) = Wi 0 2xl~,2 2x,~,3 0 ' N
0 0 Xi 4 Xi3 N Z W2 {P—r bx)d; + PT (xi)ﬁdi}
0 —Xi4 0 —Xi2 pr "\ {PT(xpd; +PT (xi)5di}T
—Xi 4 0 0  —xi1 N - T
0 0 0 0 _ ng[l’ @)Xy Pdj) — P (x)Xx; a,P(d) } (33)
Ks(oy =w| 2 % 00 & [ -PT@)Zy, 4 P(xi) + PT(x) Za,Pxi)
R B 0 x4 X3 and
0 2)6,',2 0 2)6,',4
, , T
0 xiz w2 0 <8xi8vT> = (65 Y w; [PT(axi)d,» +pP7 (x,-)ad,-]
0 0 0 0 P
—Xi 4 0 0 —Xi1 N
Koy —w| %3 0 w0 29) - <Z Wi [axidjp(axi) + Sxin,TP(x,-)]>
0 —Xi 4 0 ) i=1
0 Xi3 Xi2 0 N
0 0  2vs 2xi4 - <Z wi [SxiédiTP(x,-) - 8x,~5fo(d,~)]>
i=1
N
The noise-perturbed system is given as follows:
P Y & =Y wi[BxaPx) — T, Pd)] (34)
i=1
(H+68H)(g+d8g) =v+dv provided that
= SHg + (H + SH)sg = &v N i §
i=1
and
where T
Sed = <5x[5d,. )
v i+ o7) (5% — 8b;)
g =3 1 _ <(s i+ o7; ) (87 — ob ) >
— ~ . ~ =T =T
= - - <8bi6riT + 87,67 — 6bish, — 57:5b, >
N 7 N 7
~ S ~ T .7
=33 gKi@ysxi=Y | Y gk |dxi. B = (8b;SF] + o767 — 8b;sh, — SF:5b, )
i=1 j=1 i=1 | j=1 =% -3;. (36)
. In particular, when 5,- and 7; have the same statistical distribu-
We obtain tion, especially in the cases with huge numbers of points, the
covariance of g is
T, = <8g8gT> T, =H'
N
- <H+ (8v — SHg)(8v — SHg)TH+> > w[PT (@) P) + P ) g P
Ty [reen o H*.(37)
svév' + SHgg"SH ) LAY e L T
_ + + + Ki(x) | 2y KT (x;
- <H (—5Hg8vT —svgTom )1 G| 5O g f e ®
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Algorithm 1 Generalized Linear n-Dimensional Registration

Require: Point clouds with N pairs of measurements r; and
b;fori=1,2,...,N. _

Step 1: Compute mean points b = Y ', a:b;, ¥ = Y\, air;.
Step 2: Compute H matrix and v vector using (21). If N is
large, use results in (25) ~ (30) to simplify the process.
Step 3: Compute required elements of g in (20) and then
compute the rotation using (22). _

Step 4: Reconstruct the translation by ¢ = b — Cr.

Step 5: Compute the covariances of R and ¢ by (46) and (47)
respectively.

While in applications we always need uncertainty descrip-
tion of R. In this way, one may derive
I+GR=1-G
{ [I+G(g+38g)|(R+R) =1—G(g+3g)
= (R+5R)+G(g+8)(R+R) =1—G(g+dg)
= R+ GéR + G(6g)R = —G(6g)

= SR =~ +G) '8gg(R+1). (38)
Let us write R+1 in columns as R +1 = (s1,82,...,58y,).
Then, one has

8gg (R +1) = [P(s1)dg. P(s2)dg. ... P(sn)dg].  (39)

Finally, the covariance of R is
g = <8R8RT>
I+G) '8gg(R+1)
= T
R+D ogg[I+G)]

I+6)~!
~\[Zh, Pswsgsg PTso][d+ 6]

n T
—I+G)! [Z P(sk)EgPT(sk):| [a+6™'] . @o

k=1
Likewise, the error model of ¢ is 6t = b — SRr— RSr, which
leads to
T~ %, +RE,RT
I+ G) 'oge R+ DF
<fT<R +D)sgg [ + G)“]T>
~ Xp+RE,R"

n T

+A+6)! [Z P(?ksk)ngT@sk)} [a+6)™']
k=1

(4D

III. EXPERIMENTAL RESULTS
A. Accuracy and Robustness

The algorithmic flow is show in Algorithm II-E. For the
Sections III-A and III-B, we simulate the following vector
pairs:

bi = Ryyel'i + bywe +6, i=1,2,...,N (42)
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where € ~ N(0, el) is the zero-mean random perturbation
subject to the Gaussian distribution and Ryye, #irye are true ref-
erence rotation matrix and translation vector. ¢ here is called
the noise density that decides the magnitude of the noise. The
accuracy of the n-dimensional registration will be affected by
the value of ¢, i.e., with larger ¢ the estimation accuracy will
be worse. Six cases with different values of ¢ are simulated
uniformly where the point number N = 100000 to guaran-
tee the average statistical performance. The following error
criterion is invoked:

1 N
€= ; |b; — Rr, — |- 43)

We pick up the SVD [46] and LMI [28] approaches for
comparison. The SVD uses the following principle:

R = U diag[l, 1,...,det(UV)]VT (44)
with SVD of Z such that
vnv' =z
1 & .
z= Z(bi - b)(r,' AT (45)

i=1

where II is the diagonal matrix containing all singular values
of Z. The LMI is based on the following optimization:

arg max tr(RZT) (46)
ReSO(n)
subject to
I RT
( R 1 ) > 0. 47

All these algorithms are implemented using the C++ pro-
gramming language of the standard 2014 and compiled with
the GNU gcc 7.0 compiler. We use the Eigen library to
compute the SVD and related matrix manipulations. The
GpoSolver is adopted for the solution of LMI [47].
Each algorithm is executed for 100 times for mean errors.
Simulations on different dimensions are also reflected in the
presented tables. The results are shown in Tables I-VI.

One can see that with low values of ¢, all the algorithms
are able to generate accurate registration results. Among them,
the SVD owns the best precision and the proposed method
ranks the second. With growing ¢, the noise also grows, induc-
ing higher errors to the model (42). The proposed algorithm
now has the same accuracy with that of SVD while the LMI
gradually performs badly. The reason is that SVD and the
proposed algorithm share the same optimization framework
and all belong to analytical solutions. However, LMI con-
verts the rigid-registration loss function into a polynomial
optimization one that requires a sophisticated nonlinear solver.
As SVD has been regarded as a highly reliable algorithm [48],
[49], that is to say the proposed method is stable and reliable
in this sense.
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TABLE 1
ACCURACY (NOISE DENSITY ¢ = 1.0 x 10715)
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TABLE 111
ACCURACY (NOISE DENSITY ¢ = 1.0 x 10708)

Dimension n €SVD €ELMI €Proposed Dimension n €SVD €ELMI €Proposed
5 2.5189 x 10~15 39770 x 10~15  2.5534 x 10— 15 5 7.7914 x 10799 1.1886 x 10~9%  7.7914 x 1029
10 4.1445 x 10715 7.5453 x 10715  4.1869 x 10—15 10 1.2518 x 10798 2.0765 x 10-98  1.2518 x 1008
15 6.1569 x 10715 9.8278 x 10715  6.1933 x 10—15 15 1.5479 x 10798 26433 x 10798 1.5479 x 1008
20 7.4839 x 10715 1.2049 x 10~  7.5265 x 1015 20 1.8111 x 10798 3.0359 x 10798 1.8111 x 1098
25 9.4027 x 10715 1.4780 x 10~1*  9.4433 x 10—15 25 2.0241 x 10798 3.4652 x 10798 2.0241 x 10—98
30 8.9694 x 10~15  1.3265 x 10714  9.0142 x 10—15 30 2.2276 x 10798 3.5577 x 10798 2.2276 x 10—098
35 1.0416 x 10~ 1.5201 x 10~  1.0466 x 10— 14 35 2.4160 x 10798 43726 x 10798  2.4160 x 10—%8
40 1.1447 x 1014 1.7480 x 10~ 1.1496 x 10— 14 40 2.5811 x 10798 3.8046 x 10798  2.5811 x 1098
45 1.2971 x 10~1%  2.0592 x 10~ 1.3020 x 10—14 45 2.7455 x 10798 4.2292 x 10798 2.7455 x 10— 08
50 1.4288 x 10~ 1% 22007 x 10~'*  1.4339 x 10— 14 50 2.8837 x 10798 4.9336 x 10798  2.8837 x 1008
55 1.3608 x 10~ 22283 x 10-1*4  1.3661 x 1014 55 3.0398 x 10708 47447 x 1079%  3.0398 x 10098
60 1.4685 x 10~ 27381 x 10~14  1.4741 x 10— 14 60 3.1659 x 10798 4.8594 x 10798  3.1659 x 10—28
65 1.5838 x 10~ 2.5491 x 10~ 14  1.5894 x 10— 14 65 3.3004 x 10798 5.0344 x 10~9%  3.3004 x 10—098
70 1.7252 x 10~ 27601 x 10~1*  1.7306 x 10— 14 70 3.4303 x 10798 5.8933 x 1098  3.4303 x 10—°8
75 1.7786 x 10~ 3.0958 x 10~ 14  1.7842 x 10— 14 75 3.5634 x 10798 5.1539 x 10798 3.5634 x 1098
80 1.9007 x 10~ 3.2302 x 10~1*4  1.9062 x 10— 14 80 3.6726 x 10798 5.6076 x 107°%  3.6726 x 10— 98
85 1.9726 x 10~1* 31926 x 10~1*  1.9782 x 10— 14 85 3.7855 x 10798 6.3566 x 1098  3.7855 x 1008
90 2.1036 x 10714 3.4314 x 10714  2.1094 x 10—14 90 3.8955 x 10708 6.1485 x 10798 3.8955 x 1008
95 2.0890 x 10~14 29565 x 10~  2.0948 x 10—14 95 4.0017 x 10798 6.3347 x 10798 4.0017 x 10—98
100 2.2686 x 10714 3.7892 x 10~ 14  2.2732 x 10— 14 100 4.1120 x 10798 6.5319 x 10798 4.1120 x 1098

TABLE I

ACCURACY (NOISE DENSITY ¢ = 1.0 x 10711)

Dimension n €SVD €LMI €Proposed
% 8.0732 x 10712 1.3465 x 10~ 8.0732 x 10—12
i 1.2590 x 10~ 1.6765 x 10~11  1.2590 x 10— 11
15 1.5558 x 10~11 24746 x 10~ 1.5558 x 10— 11
20 1.7976 x 10~'1  3.0183 x 10~ 1.7976 x 10— 11
25 2.0297 x 10711 34387 x 1071 2.0297 x 10— 11
30 2.2206 x 10~11  3.8058 x 10~11  2.2206 x 10—11
35 2.4105 x 10~ 3.1602 x 10~ 2.4105 x 10— 11
40 2.5741 x 10~11 3.8339 x 10~ 2.5741 x 10— 11
45 2.7409 x 10~ 11 4.2927 x 10~11  2.7409 x 10—11
50 2.8842 x 10~ 11 49149 x 10~ 2.8842 x 10—11
55 3.0359 x 10711 45121 x 1011 3.0359 x 10—11
60 3.1765 x 10~11 51417 x 1011 3.1765 x 10—11
65 3.3025 x 10711 5.3235 x 10~ 3.3025 x 10—11
70 3.4349 x 10~11 55118 x 1011 3.4349 x 10— 11
75 3.5478 x 10~ 5.5461 x 10~1!  3.5478 x 10— 11
80 3.6685 x 10711 57690 x 10~ 3.6685 x 10— 11
85 3.7946 x 10~11  5.9655 x 10~'*  3.7946 x 10—
90 3.9061 x 10-11  6.8401 x 1011 3.9061 x 10—11
95 4.0109 x 10~11  6.7446 x 10~ 4.0109 x 10—11
100 4.0974 x 10711 7.6927 x 10~ 4.0974 x 10—

TABLE IV

ACCURACY (NOISE DENSITY & = 1.0 x 1079)

Dimension n €SVD ELMI €Proposed
5 8.0834 x 10796 1.2991 x 1079  8.0834 x 1096
10 1.2327 x 10795 1.9442 x 1079°  1.2327 x 10—95
15 1.5622 x 10795 27248 x 1079°  1.5622 x 10— 95
20 1.7870 x 10795 2.8758 x 1079  1.7870 x 10— 95
25 2.0152 x 10795 3,0017 x 10795  2.0152 x 1095
30 2.2217 x 10795 3.6156 x 1079  2.2217 x 10—95
35 2.4295 x 10795 3.9725 x 1079 2.4295 x 10—95
40 2.5801 x 10795 3.5996 x 109  2.5801 x 1095
45 2.7411 x 10795 4.2853 x 10795  2.7411 x 1095
50 2.8786 x 10795 4.6512 x 10795  2.8786 x 1095
55 3.0412 x 10795 4.4348 x 10795  3.0412 x 1095
60 3.1668 x 10705 47548 x 10795  3.1668 x 10— 05
65 3.3071 x 1079 5.0175 x 1079  3.3071 x 10—95
70 3.4427 x 10795 4.9038 x 10~9°  3.4427 x 1095
75 3.5611 x 1079 6.3040 x 10795  3.5611 x 1095
80 3.6670 x 1079 59718 x 10795  3.6670 x 10—95
85 3.7910 x 1079 6.1752 x 1095 3.7910 x 1095
90 3.8971 x 10795 6.7341 x 107%%  3.8971 x 1095
95 4.0016 x 10795 6.3221 x 1079  4.0016 x 10—95
100 4.1141 x 1079 6.9154 x 1079 4.1141 x 10—95

B. Computational Efficiency

There is a slight impact of the point numbers on the com-
putational efficiency since the complexity of the algorithm is
linear with respect to the point numbers, as shown in (15).
For high-order matrices, the proposed matrix inversion will
gradually be slower than SVD. This is because the proposed
one has the complexity of O[(1/2)n(n— D] while that of the
SVD is O(n). Choosing the slowest algorithm as a basic ref-
erence, the realistic time complexity of the other algorithms
should be compentated for specific machines. This leads to
the modified time complexity expressions for the proposed
method and SVD i.e., 0(a,~n3) with a; the compensation con-
stant for ith algorithm. For instance, if we implement the
matrix operations with the famous Eigen library using C++
programming language on a MacBook Pro 2017 13” with CPU
of i7-4core 3.5 GHz, the measured mean values (100 times) are

az/a; = 1.667 x 10° and az/a; = 6.25x 10°. Then, the plots of
time complexity can be shown in Fig. 1. The unaltered matrix
inversion using Eigen is very slow in high dimensions and
has very large slopes as the dimension 7 increases. It should
be noted that a; is determined by the machine and employed
library. For lower dimensions, the computation time would be
much lower than the SVD as low-dimensional matrix inver-
sions can usually be obtained with algebraic results instantly.
The intersection point between the proposed method and SVD
is n = 112. A detailed comparison showing the exact in-run
performance of the computation time is presented in Table VII
where ¢ denotes the evaluated computation time.

We may see that with increasing dimension n, the com-
putational complexity also increases. At the initial stage, the
SVD is quite slower than the proposed method and the LMI
is always the slowest since it needs nonlinear optimizations.
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TABLE V
ACCURACY NOISE DENSITY £ = 1.0 x 1002

TABLE VI
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ACCURACY NOISE DENSITY ¢ = 1.0 x 10701

Dimension n €SVD €LMI €Proposed Dimension n €SVD €ELMI €Proposed
5 8.1853 x 10703 1.4259 x 1092  8.1853 x 10— 93 5 2.9183 x 10100 47148 x 101790 2,9183 x 10100
10 1.2534 x 10792 1.9991 x 10792 1.2534 x 10—92 10 4.1216 x 10199 6.9657 x 10190 4,1216 x 10100
15 1.5371 x 10792 2.3495 x 10792 1.5371 x 10—92 15 5.0425 x 10100 8.8207 x 10790  5.0425 x 10100
20 1.8140 x 10792 2.6999 x 10792 1.8140 x 10—92 20 5.8215 x 10100 92720 x 10190 5.8215 x 10100
25 2.0178 x 10792 3.0602 x 10792 2.0178 x 1092 25 6.5206 x 10T90  1.1008 x 101°1  6.5206 x 10100
30 2.2231 x 10792 3.7298 x 10792  2.2231 x 10—°92 30 7.1352 x 10190 12353 x 10701 7.1352 x 10100
35 2.4116 x 10792 39932 x 10792 2.4116 x 1002 35 7.7093 x 10190 13150 x 10701 7.7093 x 10100
40 2.5846 x 10792 3.9382 x 10792  2.5846 x 1002 40 8.2448 x 10100 13918 x 10701 8.2448 x 10100
45 2.7373 x 10792 38117 x 10792 2.7373 x 1002 45 8.7331 x 10100 12899 x 10701 8.7331 x 10100
50 2.8909 x 10792 4.3503 x 10~92  2.8909 x 10902 50 9.2070 x 10t90 13756 x 10791 9.2070 x 10100
55 3.0338 x 10792 5.0324 x 10792 3.0338 x 1092 55 9.6519 x 10T00 15520 x 1071 9.6519 x 10100
60 3.1645 x 10792 4.9776 x 10792 3.1645 x 1092 60 1.0085 x 10191 1.5606 x 10701 1.0085 x 10101
65 3.3087 x 10792 5.1069 x 1092  3.3087 x 1002 65 1.0494 x 10191 1.7121 x 10701 1.0494 x 10101
70 3.4326 x 10792 5.6569 x 10792 3.4326 x 1002 70 1.0898 x 10191 1.5725 x 10701 1.0898 x 10101
75 3.5564 x 10792 5.5242 x 10792 3.5564 x 1002 75 1.1281 x 10191 1.8923 x 10701 1.1281 x 10101
80 3.6693 x 10792 56178 x 10792 3.6693 x 1002 80 1.1639 x 10701 1.8249 x 10791 1.1639 x 10101
85 3.7868 x 10792 5.4755 x 10792 3.7868 x 1092 85 1.2020 x 10101 1.7407 x 10791 1.2020 x 10101
90 3.9025 x 10792 6.5662 x 10792 3.9025 x 1092 90 1.2344 x 101701 1.8864 x 10701 1.2344 x 10101
95 4.0027 x 10792 6.2286 x 10792 4.0027 x 1002 95 1.2693 x 10701 1.9491 x 10791 1.2693 x 10101
100 4.1095 x 10792 6.8882 x 10792 4.1095 x 1002 100 1.3016 x 10101 1.9967 x 10791 1.3016 x 10101

Time (s)
25

—— Proposed = a4 (ln(n— 1))3
2
SVD =a, n®
LMI = a3 n®

Dimension n

0 20 40 60 80 100 120

Fig. 1. Time complexity performances of various algorithms.

However, when n becomes larger, the matrix manipulations
of the proposed method also turn to be more and more time-
consuming. This leads to the deceasing ratio of fsvp/tproposed-
That is to say, for very large n, SVD will be faster and the
LMI will be even more complex than the proposed method, as
indicated by f1.m1/?proposed (also see Fig. 2). Note that there are
very few cases that n is larger than 100, the proposed method
is more practical than SVD in most cases since it also owns
information of covariances.

C. Application: Covariance-Preserving Interpolation on
Special Euclidean Group SE(n)

The special Euclidean group SE(n) is a simultaneous precise
description of the rotation and translation, which has been
extensively used in rigid-body state estimation and con-
trol [23], [50], [51]. Also, in the field of robotics, SE(n) plays
important roles in camera egomotion estimation, hand-eye cal-
ibration, motion planning, etc. [26], [31], [52]. However, in
engineering applications, the measurements on SE(n) are usu-
ally restricted by low sampling frequency and asynchronous
data transmission. Therefore, the interpolated result between
two successive measurements on SE(n) will be vital to such

systems. The interpolation of SE(n) is sometimes dependent
on the interpolation on SO(n). Belta and Kumar studied the
interpolation on SE(3) using SVD, where the rotation and
translation are simultaneously interpolated for optimal approx-
imation with error of SE(3) geodesics. Because of the internal
nonlinearity of SVD, it is very hard for the users to obtain
the closed-form information of covariance of the interpolated
results. The probabilistic descriptions of interpolation would
be of great significance for a later covariance-required applica-
tion e.g., a Kalman filter on the Lie group [53], [54]. Therefore,
our next task is to present a new framework for such a purpose.

In [55], Thomas gave an approximation from SE(3) to
SO(4), which is later improved in [31]. We have proposed
a new generalization such that the following mapping F from
SE(n) to SO(n + 1), namely, SE(n) + + [56]:

R ¢ F
T:(0 1)eSE(n) <]:>

R et
—et'R 1

holds. Note that here Rt so(+1) is not strictly on SO(n) and
should be orthonormalized to Xg before further computation

.
tr[XRRT,SO(n+1)]

R7 s0(n+1) = (48)

arg max
XReSO(n+1)

(49)

which can be solved via the proposed algorithm by forming
the following vector pairs [57], [58]:

b1 = Rr.som+n1 [ri=(1,0,...,007
by = Rrsomin2 |r2=0,1,...,007

9. (50)
b, = Rr.som+yn | ra=(0,0,..., )7

with column vectors of Ry so(n41) being

Rt som+1)

= [Rr,50(n+1),1. RT.500141).2+ - - - RT 500 41),0 ] (51)
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Fig. 2. Ratios of computation time from SVD, LMI, and the proposed method.
TABLE VII
COMPUTATION TIME
Dimension n tsvp tLMI tProposed tsvD /tProposed tLMI/tProposed

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

5.09175700 x 1093
1.86192880 x 10~ 92
2.91524970 x 10~02
5.16656850 x 1002

7.20797970 x 10792 s
1.10495224 x 10791 &

1.51141937 x 10—01
2.03090954 x 10~01
2.56202188 x 10~01
3.12731122 x 1070t

3.81157892 x 10~ 01
4.78917751 x 10701 «

5.47775943 x 1001
6.46396852 x 1001
7.63718827 x 10701
8.53510834 x 10~01

1.00388324 x 10100 5
1.19993136 x 10100 s

1.27744737 x 10100
1.40629819 x 10100

2.95878440 x 1002
3.57405530 x 10702
5.29616330 x 1002
2.46701489 x 10~01

7.83117401 x 10701
10+00 S

2.40003185 x
6.04819777 x
1.52671507 X
3.24307563 x
6.00155415 x
1.04683072 x
1.94233782 x
3.12991523 x
4.61347369 x
7.12493501 x
1.10820564 x
1.68530646 x
2.46278443 x
3.06590801 x
4.35698895 X

10100
10+01
10+01
10+0t

10+02
10+02
10+02
10+03

10103
10+03

10+02 .
10102 g

10+03 .
10103 ¢

7.14850000 X
1.78072000 X
2.34585000 x
1.11337100 X
8.61778000 X
2.08869100 X
4.54621700 X
8.92617900 X
2.01093880 x
3.10260630 X
4.47886660 X
8.93274220 X
1.12696783 X
1.55126971 X
2.41905543 X
3.26491385 X
4.99838141 X
6.58335981 X
8.61907923 X
1.14776548 X

10—05
10—04
10—04
10—03

10904

1008
10-03
10703
10—02
10—02

1002 g

10—02
10—01
10701
10—01
10—01

1001 g

10—01
10—01
10+00

7.12283276 x 10701
1.04560447 x 10102
1.24272639 x 10102
4.64047339 x 10101
8.36407950 x 10101
5.29016614 x 10101
3.32456495 x 10101
2.27522834 x 10701
1.27404269 x 10101
1.00796263 x 10101
8.51014165 x 10100
5.36137437 x 10100
4.86061739 x 10100
4.16688889 x 10100
3.15709519 x 10700
2.61419098 x 10100
2.00841664 x 10100
1.82267322 x 10100
1.48211582 x 10100
1.22524872 x 10100

4.13902833 x 10102
2.00708438 x 10102
2.25767347 x 10102
2.21580667 x 10702
9.08722897 x 10102
1.14906027 x 10103
1.33038035 x 10193
1.71037918 x 10103
1.61271722 x 10103
1.93435891 x 10103
2.33726701 x 10703
2.17440264 x 10103
2.77728888 x 10103
2.97399843 x 10103
2.94533764 x 10103
3.39428753 x 10103
3.37170439 x 10103
3.74092333 x 10103
3.55711779 x 10103
3.79606203 x 10103

The covariance of X is then given by the (40). For a series
of mapped SO(n + 1) measurements mapped from SE(n)
.» XR k, with their timestamps 71, 72, ..

Xr 1, XR 1, .-

., Tk, WE

can interpolate between the time instants k — 1 and k by

arg max
XR‘k,”kESO(VH*l)

Generated motion of the UR10 robotic arm.

-
tr[XR,k—uk[QXR,k—l + (1 — 0)Xri] } (52)
where o is the relative weight such that
= Ttk o) ). (53) Fig. 3.
Tk — Tk—1
Likewise, by setting
(b1,ba, ....by) = [0XR -1+ (1 — @) XR]
ri=(1,0,....0"
rn=01..0"
(54)

r,=(0,0,...,DT

one is able to compute the interpolated result on SO(n+1). The
covariance of Xg x_1x can also be calculated with (40). Then,
XR k—1)x should be inversed from SO(n+ 1) back to SE(n) by

the mapping F~!. The rest steps for generating covariances of
the rotational and translational parts can be referred to [31].
We use the UR10 robotic arm to perform a generated series
of motion for over 150 s while an Intel Realsense D435i cam-
era is attached to the end-effector of this arm (see Fig. 3). A
standard 12 x 9 chessboard is performed in the experimental
environment for distinct feature extraction. There are inertial
and visual outputs from the D435i but it has a low frequency
for the fisheye camera (30 fps). Therefore, a visual-inertial
navigation system is employed to estimate the motion of the
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Fig. 4. Interpolated results and their 30 bounds for the eigenaxis &.
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Fig. 5. Interpolated results and their 30 bounds for the translation ¢.

end-effector. Note that the hand-eye calibration between the
installation frame of the end-effector and the sensor frame of
the Realsense camera has been performed before experimen-
tation so that the reference transformation from the readings
of the robotic arm can be mapped precisely into the camera
frame [31].

The 1o uncertainty of the camera measurement is set to
be within 1 pixel while the in-run covariances of the inertial
measurement unit (IMU) are

Toyro = 1.34 x 1071 rad?

Taceel = 2.02 x 10731 (m/s?)? (55)

where gyro and accel denote the gyroscope and accelerome-
ter, respectively, and the covariances are produced according
to a live Allan variance test for 1 h [59]. For each visual
measurement, the visual-inertial state estimator computes the
state estimation along with its covariance by the IMU prein-
tegration [60]. These results have low sampling frequencies
so they are interpolated uniformly to 100 Hz so the reference
information provided by the robotic arm could be compared
with. The proposed algorithm is invoked to conduct such inter-
polation on SE(3), which follows the equations listed in this
section. The interpolated results along with their 30 bounds
are depicted in Figs. 4 and 5. In Fig. 4, § = (&, &, £)T
denotes the eigenaxis of a 3 x 3 rotation matrix R so that
exp(§,) = R and Ré = &. The covariance Xg actually reflects
the uncertainty of & [61]. The translation in this case is in the
3-D form such that ¢ = (z,, t,, tZ)T. We are able to observe that
the robotic manipulator mainly moves along its x and z axes. It
is observed that using the proposed method for the interpola-
tion on SE(3), we are able to recover the original motion into a
more dense one without loss of probabilistic propagation. This
is reflected in Figs. 4 and 5 that all these interpolated results
are well within the 30 bounds. As we uses the mapping from
SE(3) to SO(4) for such interpolation, the proposed method is
validated to be reliable and robust on SO(4) and can achieve
further state estimation tasks on SO(n) requiring uncertainty
descriptions.

937
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+30

—-30

..... Reference

Time (s)
150

Time (s)

150 1 — Interpolated
+30
=30
02:} ..... Reference
‘

Time (s)
50 100 150

Fig. 6. Mapping result of the proposed Lidar regis-
tration algorithm wusing first 125 s of the KITTI dataset
kitti_2011_10_03_drive_0027_synced [62]. The blue line

denotes the vehicle trajectory. The blue and green points denote the local
map while red points denotes the matching result. The white points represent
the reconstructed dense map after covariance-aided pose graph optimization.

D. Application: Covariance-Aided Lidar Mapping

We use the KITTI dataset kitti_ 2011 10 03 _drive_
0027_synced [62] to demonstrate covariance-aided Lidar
mapping using the results from the proposed method. The
KITTT dataset contains some data from a 64-beam Velodyne
HDL-64E Lidar. The Lidar has the measurement specification
of 0.09° angular resolution, 2-cm distance accuracy, which can
be used for setting the measurement covariance for further
propagation. We evaluate the trajectory errors by comparing
the results with the ground-truth data in KITTI dataset. Since
the entire trajectory is lengthy, we only visualize the first 125-s
results in Fig. 6. In these results, the frame-to-frame matching
is conducted via formula in (15). The covariance results of
rotation and translation are then generated and transferred to
a further pose graph optimization (PGO). Here, we select the
SE-Sync method [63] for globally optimal PGO computation.
Therefore, the numerical computation of PGO is guaranteed
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TABLE VIII
RMSES OF THE ESTIMATED TRAJECTORIES

Direction  Barczyk et al. [37] Censi [64] Proposed
X 2.472284 m 2.536159 m 2.421336 m
Y 2.034533 m 2.007825 m 2.016879 m
Z 1.9824760 m 1.992351 m 1.972403 m

to be optimal. Since successive frames are close to each other,
the correspondence can be easily found by the random sample
consensus (RANSAC), starting from an identity pose. Thus,
we do not consider the uncertainty of the point correspon-
dences in this work, i.e., it will be regarded as deterministic
and only pose covariance in (40) and (41) will be taken into
account. We select two representatives dealing with covariance
of ICP, i.e., works in [37] and [64], to make comparisons.
The trajectory root mean squared errors (RMSEs) are shown
in Table VIII.

The best candidate in each direction is marked bold in
Table VIII. It can be observed that although Censi’s method
outperforms the proposed method on y-axis, the overall trajec-
tory accuracy considering XYZ-axes of the proposed method
is the best. The reason is that both [37] and [64] estimate the
covariance of ICP by taking the Hessian and approximates
the covariance of the least-square in first-order, which will
inevitably bring about accuracy loss. The proposed method
does not need any numerical optimization and is explicit so
the closed-form covariance can be derived in an analytical
manner as well. These analytical forms give the rise to the
covariance accuracy, which has been indirectly revealed in the
accuracy of the localization after PGO.

IV. CONCLUSION

The n-dimensional rigid registration problem is revisited in
this article. It is shown that using the Caylay transformation,
we are able to establish a linear framework for computing the
fundamental parameters. Related covariance analysis of these
parameters along with recovered rotation and translation can
be conducted flexibly due to the existence of the proposed lin-
ear solution. It is verified that the proposed method is slower
than SVD in very high dimensions (n > 100) for a modern
computer but SVD can not provide probabilistic information
of the estimates. Finally, we propose a new method for inter-
polating measurements on the special Euclidean group SE(3),
showing that the proposed algorithm can well handle the high-
dimensional rotation orthonormalization and interpolation with
uncertainty descriptions. The current drawback of the proposed
method is evident that it consumes too many computational
resources for cases with very high dimensions. Future efforts
should be paid to seek a more computationally efficient numer-
ical framework for fast inverse or pseudo inverse of arbitrary
matrices. Source codes of this article will be made open-
access on https://github.com/zarathustr/GLnR.
The video of this work is presented on
https://youtu.be/BwfjQ9ZAy14.
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