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Abstract—For continuous-discrete filtering with strong nonlin-
earity and large measurement intervals, a Log-Euclidean metric
(LEM) based novel continuous-discrete cubature Kalman filter
(LEMCDCKF) is proposed by shifting the cubature rule-based
covariance propagation to Riemannian manifold. In conventional
CDCKFs, the covariance differential equation based on cuba-
ture points is solved with Euclidean space integration schemes,
which inevitably ignore the geometric property and restrict the
performance of CDCKF. To remedy this shortage, we propose
to define covariance on Riemannian symmetric positive definite
(SPD) manifold and integrate the cubature rule-based covariance
differential equation with the LEM-based novel scheme, which
can successfully account for the manifold property of covariance
matrices and provide accurate results. Moreover, by refining
CDCKF with the LEM based scheme, the proposed LEMCDCKF
shifts the covariance integration process to SPD manifold, which
can break through the limitation of Euclidean numerical scheme.
Numerical investigations verify the superior performance of the
proposed LEMCDCKF in air traffic control scenarios with large
measurement intervals.

Index Terms—Nonlinear continuous-discrete system, cubature
Kalman filter, Log-Euclidean metric, covariance propagation,
symmetric positive definite.

I. INTRODUCTION

KALMAN filter and its variants are fundamental and
widely used in industrial applications [1]–[4]. But, in

real application of the various Kalman type filters, the phys-
ical nature of model dynamics is usually continuous with
discrete measurement outputs [5]–[8]. Hence, it is preferable
to describe the continuous dynamic as a nonlinear stochastic
differential equation (SDE) and the measurements as a discrete
function with observation noise [9], [10], i.e. the continuous-
discrete stochastic system with following form [7], [8], [11]:

dx(t) = f (x(t)) dt+Gtdω(t), (1)
yk = h (x(tk)) + vk, (2)

where x(t) ∈ Rn is the state to be estimated at time t > 0
and yk ∈ Rm is the measurement for x(tk) at time tk(k =
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1, 2, ...); f : Rn → Rn and h : Rn → Rm are respectively the
nonlinear dynamic and measurement model; Gt ∈ Rn×q is the
known diffusion matrix; {ω(t) ∈ Rq, t > 0} is the Brownian
motion and the increment dω(t) is a zero-mean Gaussian white
process with covariance Qtd(t); vk ∈ Rm is the zero-mean
Gaussian white measurement noise with covariance Rk; the
initial state x(t0) is statistically independent from above noises
and also Gaussian white with mean xt0 and covariance Pt0 .

The Kalman type estimation problem for system (1) and (2)
is termed as nonlinear continuous-discrete Kalman filtering
(NCDKF) [12], [13]. And the propagation of state and covari-
ance between consecutive measurements requires continuously
solving the coupled moment differential equations (MDEs) and
Fokker-Planck-Kolmogorov partial differential equation [14],
[15], rendering it difficult to handle strong model nonlinearity
and rare measurements [16]–[18]. The most common idea to
avoid integrating nonlinear MDE is to discretize SDE with
numerical schemes and solve it with typical nonlinear Kalman
filters [19], such as the discrete-discrete extended Kalman
filter, discrete-discrete unscented Kalman filter, and the Itô-
Taylor cubature Kalman filter [20]. However, these methods
only calculate the state distribution of discrete instants and
might lose the continuous nature of dynamics [12], [21].

Generally, integration and transformation schemes are em-
ployed in NCDKF to numerically solve the nonlinear MDEs
[8], [17]. For example, continuous-discrete extended Kalman
filter (CDEKF) linearizes the SDE to obtain a local approx-
imation to the coupled MDEs [20]. In continuous-discrete
unscented Kalman filter and cubature Kalman filter (CDCKF),
the nonlinear MDEs are calculated as the weighted form of the
nonlinear SDE with each sampling point, which is intended
for filtering with complex nonlinearity and large intervals [9],
[16]. Nevertheless, the precision of numerically solving MDEs
is critical for predicting the state and covariance in NCDKF.
Recursive integration and/or high-order schemes with error
regulation have been employed to reduce potential errors [7],
[19], and ad hoc techniques such as the square root version are
used to improve numerical accuracy and stability [17], [19].

Note that, state covariance actually belong to the Rieman-
nian manifold of symmetric positive definite (SPD) matrices,
but above methods simply integrate the covariance differential
equation in Euclidean space and ignore the geometric property
of covariance propagation, restricting the estimation perfor-
mance [18], [22]. In [23], the covariance differential equation
of CDEKF was resolved according to the Log-Euclidean
metric (LEM). However, the Taylor-series-based linearization
in CDEKF might fail to work for filtering problems with strong
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model nonlinearity and sparse measurements.
Given above discussion, this work proposes the LEM based

novel CDCKF (LEMCDCKF) specifically for continuous-
discrete systems with strong model nonlinearity and large
measurement intervals. By proposing the LEM-based covari-
ance integration scheme, LEMCDCKF shifts the cubature rule-
based covariance propagation process of CDCKF onto the
Riemannian manifold of SPD matrices, which can remedy the
theoretical drawback of Euclidean space numerical integration
in conventional CDCKF [7], [10]. The main contributions are:

1) By defining the covariance of CDCKF on SPD manifold,
this work proposes to integrate the cubature rule-based
covariance differential equation with the LEM-based
novel scheme, which can well maintain the geometric
constraint of SPD manifold and achieve better accuracy
than the Euclidean space methods [10], [12], [20].

2) By embedding LEM-based integration with the Runge-
Kutta scheme, the proposed LEMCDCKF can break
through the bottleneck of Euclidean space numerical
schemes; furthermore, the simulation results verify LEM-
CDCKF’s superior accuracy compared with conventional
CDCKF [7], [10], especially for strongly nonlinear sys-
tems with sparse measurements.

In the remainder of this work, Section II introduces the
CDCKF with Euclidean space integration scheme. Section III
proposes the LEM-based covaraince integration scheme for
new approach LEMCDCKF. Simulation results are presented
in Section IV, followed by the conclusion in Section V.

II. CONVENTIONAL CDCKF WITH COVARIANCE
PROPAGATION IN EUCLIDEAN SPACE

CDCKF is originally designed for continuous-discrete sys-
tems with strong nonlinearity and large intervals [17], [19].
This section provides an introduction to the conventional CD-
CKF steps of numerically solving the covariance differential
equation with Euclidean space Runge-Kutta scheme.

The state and covariance prediction steps of CDCKF require
solving the cubature rule-based nonlinear MDEs [21]:

dmt

dt
= Ξ(mt, t)

∆
=

1

2n

2n∑
i=1

f (mt + Stξi, t), (3)

dPt

dt
= Ψ(Pt,mt, t)

∆
=

1

2n

2n∑
i=1

[
f (mt + Stξi, t)Stξ

⊤
i

+Stξif
⊤ (mt + Stξi, t)

]
+GtQtG

⊤
t , (4)

where ξi =
√
n

{
ei

−ei−1

i = 1, 2, ..., n
i = n+ 1, ..., 2n

are the

cubature rule sampling points with ei indicating the ith co-
ordinate base vector of Rn; St denotes the lower-triangular
matrix satisfying Pt = StS

⊤
t with ⊤ denoting the transpose

operator. To integrate the cubature rule-based MDE (3) and (4)
from tk−1 to tk, the initial conditions are mtk−1

= x̂k−1|k−1

and Ptk−1
= Pk−1|k−1, where x̂k−1|k−1 and Pk−1|k−1 are re-

spectively the posterior estimate and covariance at time instant
tk−1 [14]. The prior estimate x̂k|k−1 and covariance Pk|k−1

can be determined with x̂k|k−1 = mtk and Pk|k−1 = Ptk .

Then, given the discrete measurements, the correction stage
can be conducted as typical cubature Kalman filter. Note that,
square root algorithms integrate the lower-triangular St to
ensure numerical symmetry [12], [17].

Obviously, CDCKF’s performance heavily depends on the
numerical accuracy and stability of integrating the cubature
rule-based MDEs (3) and (4), especially for strong model
nonlinearity and large measurement intervals. Dividing interval
∆t = tk − tk−1 into N intermediates as tk−1 = tk−1,1 <
· · · < tk−1,i < · · · < tk−1,N = tk and using higher-
order integration schemes are beneficial ways of improving
the numerical precision [17], [19]. For example, using fourth-
order Runge-Kutta scheme, (3) and (4) can be numerically
integrated for sub-interval δi = tk−1,i+1 − tk−1,i as

Km
1 = Ξ(mtk−1,i

, tk−1,i),

KP
1 = Ψ(Ptk−1,i

,mtk−1,i
, tk−1,i),

Km
2 = Ξ(mtk−1,i

+ δiK
m
1 /2, tk−1,i + δi/2),

KP
2 = Ψ(Ptk−1,i

+ δiK
P
1 /2,mtk−1,i

+ δiK
m
1 /2, tk−1,i + δi/2),

Km
3 = Ξ(mtk−1,i

+ δiK
m
2 /2, tk−1,i + δi/2),

KP
3 = Ψ(Ptk−1,i

+ δiK
P
2 /2,mtk−1,i

+ δiK
m
2 /2, tk−1,i + δi/2),

Km
4 = Ξ(mtk−1,i

+ δiK
m
3 , tk−1,i + δi),

KP
4 = Ψ(Ptk−1,i

+ δiK
P
3 ,mtk−1,i

+ δiK
m
3 , tk−1,i + δi),

mtk−1,i+1
= mtk−1,i

+ δi (K
m
1 + 2Km

2 + 2Km
3 +Km

4 ) /6,

Ptk−1,i+1
= Ptk−1,i

+ δi
(
KP

1 + 2KP
2 + 2KP

3 +KP
4

)
/6,

where Km
j , KP

j (j = 1, 2, 3, 4) are intermediate terms. Be-
sides, high-order implicit integration schemes with error regu-
lator have been used to improve CDCKF’s precision [7], [10].

Problem: In above numerical implementation of CDCKF,
the cubature rule-based covariance differential equation (4) is
simply treated as an Euclidean matrix differential equation.
However, the SPD covariance matrices only constitute the
interior of a convex cone in the Euclidean vector matrix space,
i.e. the Riemannian manifold of SPD matrices [24]. There-
fore, solving the cubature rule-based covariance differential
equation (4) with Euclidean space integration schemes will
violate the geometric structure of SPD manifold and produce
inaccurate results [23]. For example, the Euclidean addition of
the covariance matrix with negative symmetry matrices may be
non-SPD, which is often encountered by conventional CDCKF
[12]. Although higher-order numerical schemes and/or extra
ad hoc techniques can improve the numerical accuracy to some
extent, they are still Euclidean space methods and cannot well
keep the geometry nature of manifold, which will inevitably
confine the performance of CDCKF.

III. CONTINUOUS-DISCRETE CKF WITH LEM-BASED
COVARIANCE INTEGRATION ON SPD MANIFOLD

To accurately preserve the manifold nature of covariance,
we propose the LEM based novel scheme to accurately inte-
grate the cubature rule-based covariance differential equation
(4), which constitutes the key innovation of LEMCDCKF.

A. Covariance Propagation on Riemannian SPD Manifold
The covariance Pt in Kalman theory naturally belongs to the

Riemannian manifold Sym+(n) of n×n SPD matrices, while
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the tangent dPt/dt = Ψ(Pt,mt, t) evolves on the manifold
of n × n symmetric matrices Sym(n) [18], [24]. According
to manifold theory, there is a local diffeomorphism between
Sym+(n) and the tangent space TPt

Sym+(n) based on the
matrix exponential expm and logarithm logm:

Sym(n) = TPtSym
+(n)

expm
⇌
logm

Sym+(n).

Therefore, the ”addition” and ”subtraction” on Sym+(n) can
be conducted using its diffeomorphism with Sym(n) and the
manipulation of Pt, Pt+δ ∈ Sym+(n) can be interpreted as

−−−−→
PtPt+δ

∆
= logm(Pt+δ)− logm(Pt) ∈ Sym(n), (5)

Pt+δ =expm
(
logm(Pt) +

−−−−→
PtPt+δ

)
∈ Sym+(n), (6)

which can help generalize the conventional numerical integra-
tion schemes of Euclidean space to the Riemannian manifold
[18]. Note that, tangent space TPt

Sym+ is aligned at manifold
point Pt; hence, a diffeomorphism is one-to-one only locally
around Pt with a small increment δ. Then, as δ → 0,

−−−−→
PtPt+δ

δ
=

logm (Pt+δ)− logm (Pt)

δ
≃ dlogm (Pt)

dtt
, (7)

where the Riemannian metric of LEM is used to evaluate the
”distance” on the manifold [24]. Here, δ is determined by the
measurement interval ∆t and the number N of intermediate
instants. Therefore, to approximate the derivative for LEM,
a scalar α with 0 < α ≪ 1 and the incremental estimate
Pt + αδdPt/dt can be employed as

dlogm(Pt)

dt
≃ logm (Pt + αδdPt/dt)− logm (Pt)

αδ
. (8)

Then with (6) and (7), as α, δ → 0, we have

−−−−→
PtPt+δ ≃ logm (Pt + αδdPt/dt)− logm (Pt)

α
, (9)

Pt+δ = expm
(
logm(Pt) +

−−−−→
PtPt+δ

)
≃

expm

(
logm (Pt + αδdPt/dt)− (1− α)logm(Pt)

α

)
. (10)

B. CDCKF with Accurate Covariance Integration on Manifold

With the proposed (10) as the basic first order implementa-
tion, higher order Euclidean numerical schemes can be gener-
alized onto SPD manifold. For example, with the intermediate
steps tk−1 = tk−1,1 < · · · < tk−1,i < · · · < tk−1,N = tk,
the fourth-order Runge-Kutta scheme of Section II-B can be
extended for covariance manipulation on the manifold. From
tk−1,i to tk−1,i+1, the Km

j (j = 1, 2, 3, 4), KP
1 and mtk−1,i+1

are same as Section II, but the calculus for terms KP
2 ,KP

3 ,KP
4

should be substituted with

L1 = logm
(
Ptk−1,i

+ αδiK
P
1 /2

)
− (1− α)logm

(
Ptk−1,i

)
,

KP
2 = Ψ

(
expm(L1/α),mtk−1,i

+ δiK
m
1 /2, tk−1,i + δi/2

)
,

L2 = logm
(
Ptk−1,i

+ αδiK
P
2 /2

)
− (1− α)logm

(
Ptk−1,i

)
,

KP
3 = Ψ

(
expm(L2/α),mtk−1,i

+ δiK
m
2 /2, tk−1,i + δi/2

)
,

L3 = logm
(
Ptk−1,i

+ αδiK
P
3

)
− (1− α)logm

(
Ptk−1,i

)
,

KP
4 = Ψ

(
expm(L3/α),mtk−1,i

+ δiK
m
3 , tk−1,i + δi

)
,

so the final calculus of Ptk−1,i+1
in Section II is refined as

M1 =
[
logm

(
Ptk−1,i

+ αδiK
P
1 /6

)
− (1− α)logm

(
Ptk−1,i

)]
/α,

M2 =
[
logm

(
expm (M1) + αδiK

P
2 /3

)
− (1− α)M1

]
/α,

M3 =
[
logm

(
expm (M2) + αδiK

P
3 /3

)
− (1− α)M2

]
/α,

M4 =
[
logm

(
expm (M3) + αδiK

P
4 /6

)
− (1− α)M3

]
/α,

Ptk−1,i+1
= expm (M4) ,

which provides the LEM-based Runge-Kutta scheme specif-
ically for accurate covariance integration on SPD manifold.
Note that, in the final calculus of Section II Ptk−1,i

is added
with the weighted Euclidean space summation of KP

j , (j =
1, 2, 3, 4). But in above proposed calculus, KP

j is recursively
injected to propagate the intermediate M1,M2,M3 and the
final one for Ptk−1,i+1

with M4 is actually obtained based on
M1,M2,M3. In this sense, the main difference of proposed
implementation of fourth-order Runge-Kutta is that the origi-
nal Pt+δ = Pt + δΨ(Pt,mt, t) is replaced by scheme (10).

C. Summary Discussions about Proposed LEMCDCKF

In the proposed LEMCDEKF, the key innovation to CDCKF
are the LEM-based new scheme (10) and the resulting novel
manifold Rung-Kutta scheme for accurately solving the cuba-
ture rule-based covariance differential equation (4). It should
be noted that although the covariance obtained by the matrix
exponential is naturally SPD, in the logarithm operations for
calculating Lj (j = 1, 2, 3), the terms with Pt and αδiK

P
j

should be strictly SPD or the logarithm would break down.
For example, a proper α should guarantee the positiveness
of (Pt + αδdPt/dt) for the logm(Pt + αδdPt/dt) of (10).
Given the initial Pt > 0, if dPt/dt is positive or semi-positive
definite, we always have Pt+αδdPt/dt > 0. But, if the least
eigenvalue of dPt/dt is negative, i.e. λmin (dPt/dt) < 0, then
the conservative condition λmin (Pt) > −αδλmin (dPt/dt)
can be used to tune the parameter α > 0 and δ > 0.

As to the computational cost, the numerical implementation
of the proposed manifold Runge-Kutta scheme extra requires
7 matrix exponential and 6 matrix logarithm operations (the
logarithm logm

(
Ptk−1,i

)
for calculating L1 can be initialized

with the M4 of previous integration step), and so it is nec-
essary to simplify their numerical complexity. Note that, the
covariance matrix P ∈ Sym+(n) with full eigenvector matrix
V and diagonal eigenvalues λ1, λ2, .., λn can be factorized as
P = V diag(λ1, λ2, .., λn)V

−1; hence, the matrix exponential
and logarithm operations can be mathematically converted into
multiple scalar operation log and exp as follows,

D
∆
= logm(P ) = logm

(
V diag(λ1, λ2, .., λn)V

−1
)

= V logm(diag(λ1, λ2, .., λn))V
−1

= V diag(logλ1, logλ2, .., logλn)V
−1

= V diag(d1, d2, .., dn)V
−1,

P = expm(D) = V expm(diag(d1, d2, .., dn)V
−1

= V diag(expd1, expd2, .., expdn))V
−1.
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Further, proper approximations can help improve the algorithm
efficiency of exponential and logarithm. For example,

exp(di) = lim
b→∞

(
1 +

di
b

)b

,

In summary, the cubature rule-based MDE (4) of CDCKF
is not a regular matrix differential equation in Euclidean space
and conventional numerical schemes might violate the mani-
fold nature and restrict the accuracy of covariance integration.
By shifting the covariance integration from Euclidean space
to the Riemannian manifold, the proposed LEMCDCKF can
well preserves the manifold geometry and break through the
performance bottleneck of conventional CDCKF.

IV. NUMERICAL ANALYSIS

This section investigates the performance of LEMCDEKF
using numerical simulations of the air traffic control scenario,
which is the benchmark application of radar tracking systems
to estimate the position and velocity of an maneuvering aircraft
[7], [10], [16], [19]. The radar tracking systems for aircraft’s
coordinated turn dynamics with Brownian motion noise can
be modeled as a typical continuous-discrete filtering problem.
For the SDE (1),f(xt) = [α̇,−ωβ̇, β̇, ωα̇, γ̇, 0, 0]⊤ ∈ R7 and
xt = [α, α̇, β, β̇, γ, γ̇, ω]⊤ ∈ R7 with α, β, γ and α̇, β̇, γ̇, ω
representing the 3D position (m), velocity (m/s) and turn
rate(◦/s). Moreover, wt ∈ R7 is with diffusion matrix Gt = I7
and Qt = diag([0, 0.2, 0, 0.2, 0, 0.2, 0.000049]). h(xk) =[√

α2
k + β2

k + γ2
k, tan

−1 (βk/αk) , tan
−1

(
γk/

√
α2
k + β2

k

)]⊤
with Rk = diag([2500, 0.01, 0.01]) and measurement
interval ∆t. The true continuous states for SDE (1) are
generated by the Euler-Maruyama method using a time
increment of 1 µs for 210s with the initial condition of
state xt0 = [1000, 0, 2650, 150, 200, 0, 6]T and covariance
Pt0 = [20, 0.02, 10, 0.01, 5, 0.005, 0.01]T .

The LEMCDCKF with α = 0.01 was compared with
the Runge-Kutta-based DD extended Kalman filter (DDEKF)
and CDEKF [20],nthe Runge-Kutta-based CDCKF [9], the
Runge-Kutta-based NCDCKF [16], the Itô-Taylor 1.5 based
ItoCDCKF [19], and the LEMCDEKF that embeds the LEM-
based scheme into CDEKF. The random state was initialized
with Gaussian mean xt0 and covariance Pt0 . Since the research
topic of this work is to improve the state estimation precision
of nonlinear continuous-discrete filtering problem, so it is
necessary to evaluate the final ARMSE results of proposed
LEMCDCKF and other methods. A total of 100 Monte Carlo
simulations with true trajectories and measurements and the
average root-mean-square error (ARMSE) of the 3D position
[15] were calculated as the evaluation metric:

1) With constant δi= 0.002s (N = 500∆t) for the numerical
Runge-Kutta scheme, the ARMSE results of all filters for
the large interval ∆t = 5 ∼ 30 are given in Fig. 1.

2) With measurement interval ∆t= 10 or 30s, the ARMSE
results for the intermediate number N = 300 ∼ 1000∆t
are respectively displayed in Figs. 2 and 3.

According to above ARMASE results, we can arrive at the
following conclusions about the filtering performance.
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Fig. 1. ARMSE results of 3D position for different filtering methods with
large intervals of ∆t = 5s, 10s, 15s, 20s, 25s, 30s.
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1) With the same condition δi=0.002s (i.e. N = 500∆t),
the proposed LEMCDCKF exhibited better estimation
accuracy than the other methods for filtering with large
measurement intervals ∆t = 5 ∼ 30, as shown in
Fig. 1. For interval ∆t = 5, although LEMCDEKF
can provide similar results to LEMCDCKF, it degrades
quickly for larger ∆t and even diverges for ∆t > 20. The
ARMSE results of CDCKF, NCDCKF and ItoCDCKF
were obviously larger than that of LEMCDCKF.

2) The ARMSE results of CDEKF, DDEKF, CDCKF, NCD-
CKF and ItoDDCKF were nearly constant for N ≥
500 (Figs. 2 and 3). This demonstrated that they had
achieved their performance limit of estimation accuracy
and even a larger N could not produce any improvement.
Accordingly, with the LEM-based propagation scheme,
the proposed LEMCDCKF can effectively break through
the theoretical restriction of Euclidean space integration
schemes, confirming the discussions in Section III-C.

3) For the cases of larger integration interval ∆t = 30
in Fig. 3, with N < 500∆t the sub-interval δi was
not sufficiently small to ensure the required accuracy
condition for the equation (7) ∼ (10); actually, the new
scheme (10) for LEMCDCKF works well for N ≥ 500∆t
while the LEMCDEKF only displays degraded accuracy
for N ≥ 700∆t. So, for large ∆t, a smaller δi (larger
N ) is preferred for LEMCDCKF such as N ≥ 500∆t.

4) For implementations using MATLAB code on a 64-bit
computer with a 3.60 GHz i7-7700 CPU, the average
computational cost of LEMCDCKF was approximately
2.6 times that of the conventional CDCKF due to extra
usage of the matrix logarithm and exponential operations,
as discussed in Section III-C.

Obviously, using the LEM-based propagation scheme, the
proposed LEMCDCKF can effectively break through the re-
striction of the Euclidean space integration scheme in conven-
tional methods, confirming the related discussions in Section
III-C. Note that, the detailed filtering steps of general CDCKF
and the proposed LEMCDCKF are all same except that
their covariance propagation schemes for (4) are the critical
difference between CDCKF and LEMCDCKF. Therefore, we
think the improved performance of LEMCDCKF is just due to
the contribution of proposed covariance propagation scheme
(10) on manifold.

V. CONCLUSIONS

In this work, the LEM-based new CDCKF was proposed for
continuous-discrete systems with strong nonlinearity and large
measurement intervals. As the main innovation, the cubature
rule-based covariance differential equation is considered on
the Riemannian manifold and then propagated with the LEM-
based Runge-Kutta scheme, avoiding the restrictions of the
Euclidean space numerical integration scheme. Numerical
simulations further demonstrated that the proposed LEMCD-
CKF can overcome the theoretical drawback of conventional
CDCKF in Euclidean space and effectively improve estimation
accuracy.
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