
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

RoboEC2: A Novel Cloud Robotic System With
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Abstract— Deep neural networks (DNNs) are increasingly
utilized in robotic tasks. However, resource-constrained mobile
robots often do not have sufficient onboard computing resources
or power reserves to run the most accurate and state-of-the-
art DNNs. Cloud robotics has the benefit of enabling robots to
offload DNNs to cloud servers, which is considered a promising
technology to address the issue. However, comprehensive issues
exist, including flexibility, convenience, offloading policy, and
especially network robustness in its implementations and
deployments. Although it is essential to promote cloud robotics
to be practical, a cloud robotic system that addresses these issues
comprehensively has never been proposed. Accordingly, in this
work, we present RoboEC2, a novel cloud robotic system with
dynamic network offloading implemented assisted by Amazon
EC2. To realize the goal, we present a cloud-edge cooperation
framework based on ROS and Amazon Web Services (AWS)
and a network offloading approach with a dynamic splitting
way. RoboEC2 is capable of executing its network offloading
program in any conditions, including disconnected. We model
the DNN offloading problem in RoboEC2 to a specific multi-
objective optimization problem and address it by proposing
the Spotlight Criteria Algorithm (SCA). RoboEC2 is flexible,
convenient, and robust. It is the first cloud robotic system with
no constraints on time, location, or computing power. Finally,
We demonstrate RoboEC2 with analyses and experiments that
it performs better in comprehensive metrics compared with
the state-of-the-art approach. We open-source the system at
https://github.com/RoboEC2/RoboEC2.
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Note to Practitioners—RoboEC2 is a work that combines
cloud computing and robotics. As the deep learning models are
becoming larger, robots are becoming more and more difficult to
run the state-of-the-art models locally. It has become one of the
major problems in robotics. RoboEC2 was proposed to address
this problem. It enables more robotics researchers to equip their
robots with the power of cloud computing. To be honest, it is
very difficult for us to complete this work that is a robotic system
with cloud computing. We need to address a lot of difficulties
such as network, the cloud platform, algorithms, robot platforms,
and conduct various robotic tasks. We have spent more than
one year on this system and overcome countless difficulties to
complete it. All of what we do is to make robotics developer
easier strengthen their robots with cloud. Whether you are
an autonomous driving engineer, robotic arm developer, SLAM
researcher, mobile robotics researcher, or any other developer
working on robotics applications based on ROS and deep learning
models, you can use RoboEC2 to make them perform better.
You don’t need to worry about networking, because RoboEC2
has solved it perfectly. You don’t need to worry about the
serious algorithms in the system, because we provide easily used
interact files for you to configure. You just need to tell RoboEC2
which metrics your robotics application needs to focus on. With
RoboEC2, all the robotic researchers/developers are capable of
enhancing their robotic applications with cloud computing in just
a few simple steps and executing them in any network conditions.
So, why not?

Index Terms— Cloud robotics, cloud ROS, amazon EC2,
network offloading.

I. INTRODUCTION

DEEP learning models have been demonstrated to
achieve superior performance in various robotics tasks,

particularly in the areas of perception and decision-making.
However, the use of these models can significantly increase
the computational requirements and energy consumption of
robots, leading to challenges in terms of endurance and
resource constraints for autonomous mobile robots such as
self-driving cars, delivery drones, and autonomous logistics
vehicles. This issue, known as the compute-and-power-limited
problem in mobile robotics, presents a significant challenge for
the widespread adoption of robots.

Cloud robotics [12] is an effective way to address these
issues, and it is an emerging technology that migrates
complex computations to the cloud. Offloading deep natural
networks (DNNs) to the cloud or the edge for computation
effectively reduces local robot’s computational stress and
power consumption, which is also researched in cloud or edge
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Fig. 1. For the cloud robotic system with DNNs offloading, there
exist comprehensive requirements such as convenience for the user, flexible
offloading policy, appropriate computation distribution between edge and
clouds, and especially robustness on various conditions. A practical system has
never been proposed. In this paper, we realize this by presenting RoboEC2,
a novel cloud robotic system with dynamic network offloading assisted by
Amazon EC2.

computing. The above approaches, referred to as the cloud
robotic system with network offloading, impose a set of trade-
offs that have hitherto only been marginally addressed in the
literature. Specifically, while offloading DNNs to the cloud
reduces the onboard computing requirements, it may result in
latency that could severely degrade performance if a network
is highly congested. We need to make better trade-offs in
terms of accuracy, time, computational cost, etc. In addition
to this, the deployment of cloud robotics is seldom mentioned
in the literature. Indeed, it is impossible to build a separate
cloud server for a particular robot and spend amounts of
time and efforts to deploy the scheme such as the network
offloading every time. Therefore, a convenient cloud robotic
system with dynamic network offloading is the possible answer
to the compute-and-power-limited problem in robotics. Some
generalized framework as FogROS and offloading algorithms
for specific robotic tasks are proposed. However, There is no
dynamic offloading framework that has the ability to perform
robustly for various robotic tasks in all conditions, rather than
completely offloading or only optimize specific tasks. ROS
based, convenient, robust and adaptive are elements that are
essential for developers. The cloud robotics community looks
forward to a system that have all these elements.

To address the gap, we present RoboEC2 that is a
novel cloud robotic system with dynamic network offloading
implemented with Amazon Elastic Compute Cloud (Amazon
EC2). RoboEC2 is implemented based on ROS, the most
widely used operating system in robotics. RoboEC2 realizes
cloud-edge communication by building a Virtual Private Cloud
(VPC) in Amazon EC2. Amazon Web Services (AWS) has
ensured that the configuration of the computing power of
the cloud in RoboEC2 is flexible, which totally depends on

needs. Moreover, it can be connected at any time because
AWS is constantly running. RoboEC2 takes a more advanced
approach proposed in this paper to network offloading. The
system simultaneously balances consumption, accuracy, and
time, dynamically splits network layers based on current
conditions. The above ensures that RoboEC2 is capable of
operating in any network conditions, including disconnection,
congestion, etc. It is always able to make the right decisions
based on a combination of all the considerations. RoboEC2
performs better than the SOTA approach, one of the previous
best system paper finalists of RSS. Last but not least, it also
provides a robust and practical framework.

In our work, we have developed a novel service that
combines DNN segmentation with the ROS system in order
to address the specific needs of robot tasks. Our service is
designed to be used by users in a variety of conditions, and we
have tested it extensively in order to ensure that it is reliable,
convenient, and practical. One of the key contributions of our
work is the integration of DNN segmentation into the ROS
system, which enables the use of this technique for a wide
range of robot tasks. This integration is important because it
allows for the seamless integration of DNN segmentation with
other robot capabilities and enables the use of this technique
in real-world applications. Another important contribution of
our work is the focus on practicality and usability. Unlike
many other DNN segmentation approaches, which are focused
on theoretical contributions or the optimization of specific
performance metrics, our service is designed to be used
reliably and conveniently in various conditions. This focus on
practicality and usability sets our work apart from other DNN
segmentation approaches and makes it a valuable contribution
to the field.

It is important to note that the goal of a “service” is
different from the goal of an “algorithm”. While there have
been numerous deep neural network (DNN) segmentation
algorithms proposed in the literature, to the best of our
knowledge, there has not yet been a DNN segmentation
embedded robotic system that is able to operate at the level of
a “service”. In other words, a service must be able to function
robustly and conveniently under a variety of conditions, while
an algorithm is typically optimized for a specific set of
conditions as specified in the corresponding research paper.
This is one of the key distinctions of our work, as we have
developed a DNN segmentation embedded robotic system
that is able to operate as a service, rather than just an
algorithm.

Our system’s algorithm also needs to meet the requirements
of a service, including adaptability and robustness to various
conditions. This paper makes a contribution in this regard by
proposing an algorithm that, while not necessarily the most
advanced in terms of certain metrics, is designed with the goal
of being applicable to robotic systems in a service context,
something that has not been previously achieved. This is an
important step towards the development of reliable and flexible
cloud robotics services, as it allows us to consider not just the
performance of individual algorithms, but also how they can be
integrated into a larger system and used in various real-world
scenarios. By focusing on the service aspect, we are able to
address the challenges of adapting to different conditions and
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ensure that our system is capable of handling a wide range of
tasks and environments.

Overall, we make the following contributions:
1) Our work aims to address the need for a “service”

rather than just an “algorithm” in the field of cloud
robotics. Our system, RoboEC2, is designed to be plug-
and-play, robust, and flexible enough to be used for
a variety of robotics tasks. Its cloud-edge-cooperation-
based framework and implementation using Amazon
Elastic Compute Cloud (EC2) allow it to be conducted
at any time and place with an internet connection, and
its computing power can be easily scaled up or down as
needed. These features make RoboEC2 the first cloud
robotics system that is truly unconstrained by time,
location, or computing power, and is able to meet the
high demands of a service.

2) To address the issue of adapting the algorithm for
general robotic tasks for all conditions that a service
requires, rather than the current proposed for specific
conditions. We present a novel network offloading policy
that is adopted in RoboEC2. Different from the state-of-
the-art cloud robotic network offloading policy that only
takes choices between the local robot and the cloud, the
proposed policy dynamically splits and offloads layers
of DNN. It has a better performance in related metrics.

3) We formulated the dynamic splitting and offloading
process to a Multi-objective optimization (MOO) prob-
lem. We addressed it by proposing a Spotlight Criteria
Algorithm (SCA), which is capable of handling diverse
network conditions and flexibly trade-off robot and
cloud computation. It successfully balances accuracy,
time, and computational cost and addresses the gap
where the proposed approaches only seek to optimize
or make the best use of resources without considering
the characteristics of the actual robot task.

4) We demonstrate RoboEC2 with experiments including
homography estimation, object detection, and path
planning. These are common functions in mobile
robots, robotic arms, self-driving cars etc., with different
constraints on time, accuracy, cost, etc. RoboEC2 has a
better performance compared with the baseline and the
SOTA method.

Organization: In Section II, we survey existing work
on cloud robotics and network offloading algorithms in it.
Significant challenges are also summarized in this section.
To address these, we then present the framework and
specific technologies of RoboEC2 in Section III and the
dynamic network offloading approach in Section IV. Finally,
we demonstrate RoboEC2 with experiments analyses in
Section V.

II. RELATED WORK

A. Cloud Robotics

The concept of cloud robotics can be traced back about
two decades to the advent of “Networked Robotics” [15].
Reference [19] described the advantages of using remote
computing for robot control in 1997. In 2001, the IEEE

Robotics and Automation Society established the Technical
Committee on Networked Robotics [27]. In 2010, James
Kuffner first proposed “Cloud Robotics” to describe the
increasing number of robotics or automation systems that rely
on remote data or code for effective operation [12]. Since
then, various researches of cloud robotic systems have been
developed [21]. Cloud robotic system is the technology that
utilizes remote cloud servers to assist local robots. RoboEarth
is a famous cloud robotic system developed by European
scientists, RoboEarth project envisioned the construction of “a
giant network and database repository where robots can share
information and learn from each other about their behaviour
and environment” [37]. With the increasing developments
of deep learning, a few cloud robotic learning systems are
proposed, capable of sharing knowledge and improving or
assisting learning of local robots. Reference [22] present a
paradigm to build a cloud brain for robots, the author utilized
lifelong learning to learn navigation in a federated framework.
In this work, the robot learn navigation with reinforcement
learning firstly, and then upload its model parameters to
the cloud. The cloud server fuse these models and send to
edge robots. Also for the cloud brain conduction, the [23]
unitized imitation learning to train local models and the [24]
generate novel scenarios to the cloud server and improve the
local training. There are also some cloud robotics approaches
proposed with offloading algorithms to address typical robotic
issues such as SLAM [11], [31], object detection [35], grasp
planning [34], motion planning [17], human-robot interaction
[25], etc. We then introduce them in the following subsection.

B. Computation Offloading of Cloud Robotics

For robot tasks or computation offloading. Some other data
or computation offloading algorithms for robotic computation
are present. For the SLAM task, [31] present a present a
system architecture for offloading computationally expensive
localization and mapping tasks to smart Edge gateways which
use Fog services. The comparative advantage of using Edge
computing for robots and nodes are discussed keeping the
focus on energy efficiency and operational latency. Instead
of directly transferring a large amount of data from robots
to the cloud, the work proposed an Edge-Fog-Cloud based
system for performance advantages. Run from the mains
supply, the powerful Edge layer can pre-process and analyze
data easily, implement advanced features and ensure data
security by applying complex encryption algorithms. The Fog
layer can intelligently manage the smart gateways of Edge
layer. Reference [11] proposes a vision based SLAM system
(vSLAM) includes RGB-D cameras with cloud computing
back-end. That is ideal for multiple unmanned ground vehicles
(UGV) and aerial vehicles (UAV), and cooperative work
flow among them. The authors proposed an algorithm in
order to better identify key features in the world that
could be used in each agents’ own map, or one that is
shared across multiple agents. The [1] present Edge-SLAM,
a system that uses edge computing resources to offload parts
of Visual-SLAM. They use ORB-SLAM2 as a prototypical
Visual-SLAM system and modify it to a split architecture

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on December 08,2023 at 02:02:28 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 2. General approaches of offloading for cloud robotics.

between the edge and the mobile device. For the grasping task,
a cloud robotic framework for grasping is proposed [20]. The
authors train the grasp model in Google Cloud TPU and then
deploy the model in edge robotic arms. For motion planning
tasks, the [17] introduce a method for splitting the computation
of a robot’s motion planning between the robot’s low-power
embedded computer, and a high-performance cloud-based
compute service. The proposed algorithms rapidly computes
an initial roadmap and then sends a mixed sparse or dense
subgraph to the robot. The proposed method gains significant
improvement in the responsiveness and quality of motion plans
in interactive scenarios with typical latency and bandwidth
limitations. Reference [2], the author present a novel data
offloading decision-making framework, where users have the
option to partially offload their data to a complex Multi-
access Edge Computing (MEC) environment, consisting of
both ground and UAV-mounted MEC servers.

However, these works are more focused on purely resource
optimization problems that are application-specific and not
generalized. Such specific algorithms are weakly adaptable
to various robotic tasks and aren’t able to react effectively
to some extreme conditions, such as disconnection from
the Internet. For most robot developers, such algorithms
are not in great demand. On the other hand, ROS is the
developed standard for creating robot automation applications
and components, it serves as the bridge between robots and
functional packages. ROS is the basis for most intelligent
robots, it has a unique node-based communication mechanism,
thus only offloading data or computation without ROS

is insufficient. Although these papers have proposed the
algorithms of offloading in robotics, most of them are without
ROS. The community needs an easy-to-deploy, robust system
framework that is suitable for a variety of robotic tasks rather
than a specific solution.

Additionally, we conducted research on general offloading
approaches for cloud robotics. As shown in the Fig. 2,
we have summarized the latest offloading methods for cloud
robotics. General offloading methods for cloud robotics can
be divided into three directions: task allocation between cloud
and robots, computation allocation among robots in swarm
robotics, and computation allocation based on ROS Node.
From the figure, it is clear that this paper focuses on the
direction of computation allocation based on ROS Node.
Therefore, the comparative methods we have chosen include
PoundCloud [26] FogROS [5], [18] and reinforcement learning
based node offloading [6].

C. FogROS

FogROS is the first generalized framework that utilizes
ROS to conduct the computation offloading. It is regarded
as an extension of the Robot Operating System (ROS), the
defacto standard for creating robot automation applications
and components. It allows researchers to deploy components
of their software to the cloud with minimal effort, and
correspondingly gain access to additional computing cores,
GPUs, FPGAs, and TPUs, as well as predeployed software
made available by other researchers. FogROS allows a
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Fig. 3. General framework of RoboEC2.

researcher to specify which software components will be
deployed to the cloud and to what type of computing hardware.
The authors also evaluate FogROS on robotics tasks as SLAM,
grasp planning, and motion planning. FogROS has improved
the performance greatly compared with computing on board.
However, there is not any adaptive algorithm to improve the
offloading performance in FogROS. Although offloading nodes
is configurable, we cannot always offload a node to run in the
cloud all the time because we cannot guarantee the stability of
the robot’s operating conditions as the network latency. Once
the cloud server is down, the whole system cannot continue
to run. The lack of adaptability of FogROS to the conditions
hinders it from becoming popular.

Overall, there is still a gap between application-specific
offload algorithms and FogROS in terms of widespread use.

III. DESIGN AND IMPLEMENTATION OF
THE ROBOEC2 FRAMEWORK

In this section, we firstly introduce the general framework
of RoboEC2. Then we list the design principles of RoboEC2
and follow specific implements of the RoboEC2 framework.

A. General Framework of RoboEC2

We present the framework of RoboEC2 as shown in Fig.3.
There are robots, cloud servers in the cloud robotic system.
For the proposed cloud robotic network offloading system,
functional ROS nodes are deployed in the local robot, where
contains DNN nodes. It can be seen that the previous DNN
node is split into two nodes, one in edge (local robot) and one
in the cloud. They compute different layers of the DNN. DNN
nodes in edge receive information from sensor nodes or other
nodes, and then send the processing results to downstream
nodes. The instance generated in AWS is deployed with a
DNN node in the cloud, which will receive the output from the
local DNN node, and then send its own output to downstream

nodes in the local robot. The cloud is with a high computing
performance configuration. For the offloading from the local
robot to Amazon EC2, there is a split-offloading module in the
local robot. The offloading module dynamically splits layers
of the DNN into the edge node and the cloud node. In every
step, there will be different computations distributed in edge
and cloud, or totally local/cloud computing.

B. Design Principles

The design principles of RoboEC2 is based on the
challenges that summarised in the Section II. We believe
that the system that meets the following design principles is
capable of resolving the above challenges in cloud robotics.

1) Flexible. As mentioned in the above, it is impossible
to build a separate server with network offloading for
a local robot every time. Therefore, we need to find
a new way to build clouds flexibly for local robots.
Specially, the computing power of the cloud is flexible,
the connection time is arbitrary, and the location is
unconstrained. Everything depends on the user and local
robots.

2) Convenience. Exiting cloud robotic systems are always
with complex functionality and deployment process,
which hinders the development of cloud robotics.
Accordingly, we need to acquire a new approach to
make convenient for users to deploy their network
offloading policies in the system. This is reflected
in fewer interactions with machines and fewer code
modifications.

3) Robust networkability. Connectivity is the main issue
in cloud robotics. Network instability severely degrades
the performance of cloud robotic systems, which has
been ignored in much of the literature or simply take
the robust network condition as an assumption. Neural
Networks offloading runs in real time, so we need
a robust solution to cope with connect conditions in
running process. It means that the neural network
offloading in RoboEC2 is expected to run at any
conditions, including disconnection.

4) Excellent network-offloading. Deep neural network
offloading is regarded as one of the main tasks for
the system. As deep neural network models are more
widely used in robotics. This task is becoming more
urgent to acquire advanced algorithms to cope with it.
It means that the network-offloading approach adopted
in RoboEC2 should have better performance compared
with the state-of-the art (SOTA) method.

C. Specific Implements

1) To Satisfy Design Principle 1): RoboEC2 builds clouds
for local robots based on Amazon Web Services (AWS)
as seen the cloud elements in Fig.4. AWS is the world’s
most comprehensive and broadly adopted cloud platform [32],
so RoboEC2’s adoption of AWS enables most users to get
started quickly without acquiring new knowledge. We utilize
the elastic computing cloud (EC2) service of AWS to build
RoboEC2. Elastic computing is the ability to quickly expand or
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Fig. 4. Deployment of ROS and Amazon EC2. RoboEC2 implements the deployment of ROS and EC2 with a lanunch file.

decrease computer processing, memory, and storage resources
to meet changing demands without worrying about capacity
planning and engineering for peak usage. Typically controlled
by system monitoring tools, elastic computing matches the
amount of resources allocated to the amount of resources
actually needed without disrupting operations. With cloud
elasticity, the user avoids paying for unused capacity or
idle resources and doesn’t have to worry about investing
in the purchase or maintenance of additional resources and
equipment. These characters make RoboEC2 flexible in cloud
configuration. Elastic computing is more efficient than typical
IT infrastructure, is typically automated so it doesn’t have to
rely on human administrators around the clock, and offers
continuous availability of services by avoiding unnecessary
slowdowns or service interruptions [7], which makes the
connection time is arbitrary and the location is unconstrained
in RoboEC2. Using Amazon EC2 eliminates our need to build
a separate server for the local robot every time. In particular,
operations to the cloud are carried out automatically in
RoboEC2. We invoke the AWS API to implement this part of
the process in the proposed above. In this process, RoboEC2
will split a relatively separate computation space in AWS
and allocate a flexible public IP according to the user’s
requirements. The users can use Amazon EC2 to launch
as many or as few virtual servers as they need, configure
security and networking. Based on this, We can therefore
infer that RoboEC2, which is based on Amazon EC2 for
building clouds, is able to satisfy our principle 1) for system
design.

2) To Satisfy Design Principle 2): RoboEC2 utilizes the
file-launch mechanism of ROS to execute function module
deployment in edge or cloud, which is as illustrated in Fig.4.
The Robot Operating System (ROS) is a set of software
libraries and tools that help users build robot applications.
From drivers to state-of-the-art algorithms, and with powerful
developer tools. ROS provides a mechanism of starting the

master and many nodes all at once, using a file called a
launch file. The use of launch files is widespread through
many ROS packages. Any system that deploys more than
one or two nodes is likely to take advantage of launch files
to specify and configure the nodes to be used. Naturally,
to improve the convenience of RoboEC2, we also expect to
implement network offloading deployment of edge and cloud
nodes through only one roslaunch file, which is also used in
the similar way in [5]. More advanced than [5], we need to
be specific to the neural network structure inside the node and
offload some layers rather than directly uploading the node,
the former is more challenging but we have achieved this.
An example of the contents of the launch file has included in
the RoboEC2 pipeline.1

In the example launch file of RoboEC2, the user only need
to configure the parameters of EC2 instance type, the latency
constraint and the computing power of the local robot. After
the configuration, The user only need to follow the pipeline
that only has 3 steps. RoboEC2 will automatically run. The
user does not need to do anything else. This operation makes
RoboEC2 very convenient and thus satisfies principle 2.

3) Interaction Between ROS and Amazon EC2: RoboEC2
utilizes the nodes communication protocol of ROS for
cloud-edge(local robot) interaction. As we known, the main
mechanism used by ROS nodes to communicate is by sending
and receiving messages. The messages are organized into
specific categories called topics. Nodes may publish messages
on a particular topic or subscribe to a topic to receive
information [13]. The Cloud and the local robot share one
master in ROS but different hostnames. The role of the master
is to enable individual ROS nodes to locate one another. Once
these nodes (both in local and cloud) have located each other,
they communicate with each other peer-to-peer. Until then,
you may encounter problems at the network level. As shown

1RoboEC2 pipeline: https://github.com/RoboEC2/RoboEC2
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Fig. 5. Key procedures in RoboEC2.

in Fig.4 and Fig.5, if your local robot is on a LAN and does
not have a public IP, then you will need to forward network
traffic through a virtual private network (VPN). That is because
robots only with private IP in the LAN cannot communicate
with EC2 Instance in the WAN directly.

4) The Process in RoboEC2: In RoboEC2, the local robot
utilizes SSH to create EC2 Instance, launches nodes in cloud,
and builds environments that include deep neural network
(DNN), offloading policy, and basic ros, etc. Secure Shell
(SSH) is a cryptographic network protocol for operating
network services securely over an unsecured network. Typical
applications include remote command-line, login, and remote
command execution [38]. Firstly, we use SSH to establish a
connection to AWS, creating an AWS EC2 Instance, which
is an isolated computing region with a public IP. Then,
As illustrated in Fig.5, after the user execute the launch file,
the nodes in local robots and instances will run. Local nodes
are easy to launch, while launching nodes in the cloud will
utilize SSH. After all nodes are running, the nodes in local and
cloud are able to communicate with each other via WAN or
LAN-VPN-WAN. Simultaneously, the offloading policy layers
node performs dynamic offloading algorithms to offload some
of the local DNN to the cloud. The cloud will return the DNN
output or intermediate results to the edge. The key process
procedures are shown in Fig. 5. The input is a launch file, and
the result is the cloud-edge cooperative running.

Above is the main components and processing of RoboEC2.
Note that we omit the distribution of complex authentication
process of AWS, the tunneling of SSH, the pushing of the
cloud code, etc. All of these need to be implemented in the
RoboEC2. We open source all the steps of RoboEC2 at its
pipeline.

Implementations in subsection-B satisfy the design principle
1) and 2). We then present a novel network offloading
approach that is the key to address principle 3) and 4).

Fig. 6. RoboEC2 offloads the DNN in a split-offloading way.

IV. THE DYNAMIC NETWORK OFFLOADING APPROACH

As we said in principle 3), the robust networkability means
RoboEC2 is capable of offloading deep neural networks at
anytime and anywhere. As we all known, the network’s
connectivity is uncontrollable but the algorithm is controllable.
Therefore, the way we implement the goal is not to guarantee
robustness of the network, but robustness of the network-
offloading approach for various network conditions. Combined
with principle 4), it can be deduced that the network-offloading
approach is the core of RoboEC2. Therefore, we present a
novel network offloading approach named Spotlight Criteria
Algorithm (SCA) to satisfy principle 3) and 4). In the
following, we will introduce the proposed approach.

A. Problem Statement of the Network Offloading Approach

In this section, we focus on a common scenario in cloud
robotics in which the local robot experiences a stream of
sensory input that it must process with DNN. In every time
step, it must choose to compute the DNN onboard or offload
the DNN to the cloud over a network. Furthermore, if it
chooses offloading, the robot also should decide how to offload
the DNN. Namely, it must locate the split point that divides the
DNN into a local-computing part and a cloud-computing part,
which is more flexible than the SOAT cloud robotic offloading
approach that only decides into local or cloud. These converge
into a policy conducted in the local robot. Factors that decide
the output of this policy is time, local cost of computation,
accuracy etc. that are all we considered in this process.
As presented in Fig.6, The robot flexibly decides to compute
with local model or to offload a part of the DNN to the cloud.
The robot makes decisions depending on circumstances in
every time point. So this is a dynamic offloading. This way
ensures that the robot can cope with any network condition
including disconnected. Moreover, an optimal action will be
chose in the current limited resource condition. Next, we will
model the problem mathematically.
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Fig. 7. Key process points in RoboEC2.

The dynamic network offloading problem in cloud robotics
can actually be regarded as a discrete process where the robot
behaves according to it-self conditions. As such, it can be
defined as an environment-action-reward framework. However,
it is not a Markov decision process or reinforcement learning,
but a Multi-Objective Optimisation (MOO) problem. This is
because each state is independent and has no relation to the
previous one.

Roffload : Soffload → Aoffload , s.t. Coffload. (1)

where, Soffload is the state space, Aoffload is the action space,
Roffload is rewards of actions, Coffload is constraint. In the
following, we define each of these elements in terms of
the abstractions of the dynamic network offloading problem
discussed above. Fig.7 shows the actions that the offloading
policy will take based on the current condition. In a word, the
local robot takes an offloading action based the environment
to acquire a higher reward of metrics with constraints.

1) Action Space: The action space for the DNN offloading
policy in RoboEC2 includes totally local computing, totally
cloud computing, and partially local partially cloud computing.
For the split-offloading action set, we set n split points in
DNN, which correspond to n actions respectively. Specifically,
we have n + 2 discrete actions:

at
offload =



0, totally cloud computing, ŷt
= fcloud

(
x t

)
1, split in point 1, ŷt

= fcloud (xτcloud )

2, split in point 2, ŷt
= fcloud

(
x t

)
3, split in point 3, ŷt

= fcloud
(
x t

)
... ,

...
...

n, split in point n, ŷt
= fcloud

(
x t

)
n + 1, totally local computing, ŷt

= flocal
(
x t

)
(2)

From the action space and Fig.7, we can see that the robot
can flexibly choose the way of offloading. When the network
is disconnected, it will take the action n+1. When the network
is particularly excellent, it will take action 0. And when the
network is in a mediocre state, it needs to make choices based
on rewards, constraints, and other factors in the state space.

2) State Space: Factors in state space should reflect
the conditions what the robot is with, including network
conditions, computation power, amount of data to be
transmitted, and expectation time. Latency: Latency is a
reflection of the condition of the network, which impacts the
policy a lot. In actuality, the “latency” in the paper means
“time latency” rather than “network latency”. Time latency is
a comprehensive result of both bandwidth and network latency.

Therefore, we consider both bandwidth and network latency
comprehensively. A program for detecting network latency is
deployed in RoboEC2. This program will obtain the network
latency in real time, which will be considered as one of the
factors in state space. Computing power: The computing
power of an EC2 instance is configured by the user, and the
robot’s is an inherent property of it. RoboEC2 takes FLOPS [9]
as a metric that is widely used to quantify computing power
of the local robot and the cloud. Its calculation method is
formula (3) [10]:

FLOPS = cores×
cycles
second

×
FLOPs
cycle

. (3)

where the first multiplier is the number of cores of the
processing unit, the second multiplier can be regarded
as frequency and the last multiplier is the number of
single cycle operations. Practically, GPU mostly provides its
FLOPS, the [3] published by UC Berkeley lists CPU perfor-
mances with FLOPS. Amount of data transmitted
(ADT): Output of the nearest layer before the split-point
will be transmitted to the cloud if the local robot decide to
do network offloading, so its dimension is ADT. If the local
robot decide to compute locally, the ADT is 0. If the split-point
is before the first layer that means conducting computation
in cloud totally, the ADT is the same as the dimension of
this frame of sensor data. To sum up, the state space can be
expressed as this:

s t
offload = {[Data0, Data1, . . . , Datan, Datan+1

= x]︸ ︷︷ ︸
amount of data

,

latency︸ ︷︷ ︸
network condition

, Clocal , Ccloud︸ ︷︷ ︸
computing power condition

} (4)

3) Metric Space: Factors in metric space reflect all what we
considered, including accuracy, time, and local computation
cost. We model the raw sensory input into the local robot as
a sequence {x t

}, where xt represents the data, such as a video
frame that arrives at time t . The computation that we consider
offloading to the cloud is the process of estimating some output
yt given some input x t . The estimating model DNN is based
on deep learning, x t is input and yt is output of the model. For
instance, in the scenario of processing a video stream, yt could
be a object detection result of the input frame x t , useful for
downstream decision making in the local robot. To deal with
extreme conditions such as disconnection, RoboEC2 deploys
two models, a local lightweight model and a DNN model to
be split-offload. Both the local and the DNN models map a
query x t to predictions of yt and additionally, a score of their
accuracy Accut :

ŷt
local, Accut

local = frobot
(
x t)

ŷt
cloud , Accut

cloud = fcloud
(
x t) (5)

Typically, flocal is a computationally efficient model suitable
for disconnection conditions or network-resource-constrained
mobile robots. In contrast, fcloud represents a more accurate
and deep DNN model. These models are generally com-
putationally complex, so once the robot has selected these
models, RoboEC2 will execute the split-offloading for DNN.
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Accuracy: the accuracy of local and cloud models can
be measured through a loss function L

(
yt , ŷt

)
that penalizes

differences between the predictions and the true results. c and
Accut

cloud are accuracy measurements of local or cloud models.
For developed DNN model, such as VGG, GoogLeNet, YOLO
etc., we believe that they have presented their accuracy in
papers. RoboEC2 takes these accuracy directly as Accut

local
and Accut

cloud. of the state space:

Accut
cloud =


Accuracy of cloud model,
(at

offload = 0, 1, · · · , n).

Accuracy of local model,
(at

offload = n + 1).

(6)

Time: The computing time includes the computing time
in the robot and the cloud, with communication time
between them. Practically, the time can be estimated with
latency, data volume, computing power. It is impossible
to acquire the exactly time but estimation is suffice:
Timet

o f f load = f (Datan, latency, C, Expectime). Compu-
tational cost: Computational cost in the local robot.
It refers to the local consumption of the DNN. We quantify
this metric in terms of the number of nodes computing locally:

ct
offload =



number of nodes of DN Ncloud , at
offload = 0

number of nodes after the split 1, at
offload = 1

number of nodes after the split 2, at
offload = 2

· · ·

number of nodes after the split n, at
offload = n

number of nodes of N Nlocal , at
offload = n + 1

(7)

4) Modeling as a MOO Problem: The network offloading
policy always aims to achieve a higher score in all of the
metrics. Therefore, it is clearly a Multi-Objective Optimization
problem (MOO). We model the problem as this:

max
at

offload

F(x) = [Rtime(at
offload ), Raccu(a), Rcost (at

offload )]

s.t. T ime(s t
offload , at

offload ) ≤ α

Accu(s t
offload , at

offload ) ≥ θ

Cost (s t
offload , at

offload ) ≤ γ (8)

where s t
offload is the statement in time step t , at

offload means
actions, R is rewards of metrics, α is the expectation time,
θ is the expectation accuracy, γ is the expectation computing
consumption. After observation, we find that the model has
its particularities: 1. The accuracy is binary, either cloud
or local; 2. Cost and Time are negatively correlated; 3.
Action as a variable is discrete and finite. So this is a
particular MOO. It is solvable by general methods, but they
are inefficient. So we present a new algorithm for this specific
issue based on its particularities and cloud robotic characters.
Time refers to the time required to process each frame,
including local computation time, communication time, and
cloud computation time. Accuracy refers to the degree of
correctness in the results. Cost refers to the computational
resources consumed.

We take into account the computing power of edge robots,
and the algorithm complexity is a factor to be considered.
We do our best to reduce the time of running its algorithm

and the resource consumption of the edge robot. It must be
related to the number of decisions that can be chosen. The
complexity of the algorithm, as seen in Algorithm1, depends
on L that is the number of layers of DNNs. The complexity of
the algorithm is O(L) as it needs to be estimated for each layer
of the DNN when running the offloading decision algorithm.
The restriction for some indicator boundaries has no effect on
the complexity of the algorithm, it just removes some restricted
decisions.

Algorithm 1 Spotlight Criteria Algorithm
input : DNNcloud , Accucloud : deep neural network and

its accuracy in cloud; N Nrobot , Accurobot : model
in local robot and its accuracy; Crobot , Ccloud :
computing power of robot, cloud; α: the
expectation time; θ : the expectation accuracy; γ :
the expectation computing consumption; x :
sensor data; spotlight: the metrics of greatest
concern configured by the user.

output: OffloadAction

1 while x input from the time step t do
2 L=NumLay(DNNcloud);
3 latency=NetCondition ();
4 DataL=0;
5 Action[0]=0;
6 for n← 1 to (L-1) do
7 Datan=OutputDimen(DNNcloud .layer[n]);
8 s t

offload=[Datan , Datan+1, Ccloud , Crobot , latency];
9 Action=Action+[n];

10 Action[L]=L;
11 T imet

offload=Estimate(s t
offload);

12 Cost t
offload=Calculate(DNNcloud , N Nrobot );

13 for i←0 to L do
14 if T imes t

offload,a
t
offload=i) > α then

15 Action delete Action[i]

16 if Acculocal < θ or Costs t
offload,a

t
offload=n+1 > γ then

17 Action delete [L];

18 else
19 if Spotlight=’Accuracy’ then
20 Action=Action delete [L]

21 else
22 OffloadAction=LastElement (Action)

23 return (OffloadAction)

B. Multi-Objective Optimization Problem Solving for
Dynamic Network Offloading Problems in Cloud Robotics

We propose the Spotlight Criteria Algorithm (SCA) to solve
the specific MOO modeled in above. Why spotlight? Robots
with different functions pay different attention to different
metrics. For example, for high-speed mobile robots, it pays
more attention to real-time performance; for the fire detection
function of drones, it pursues lower energy consumption; for
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the face recognition function of logistics vehicle robots to
unlock express boxes, it pays more attention to higher accuracy
rather than time or consumption. In one sentence, there is a
“spotlight” for each function of the robot and it is inappropriate
to make trade-offs among different objective functions as
in the regular MOO. Therefore, we proposed the Spotlight
Criteria Algorithm to address this specific MOO, as shown
in Algorithm 1. In RoboEC2, the users need to provide the
spotlight parameter to get the network offloading action. SCA
is designed to enable the overall system to achieve service-
level performance rather than optimizing for a specific metric,
such as DNN offloading. In our system, different functions of
the robot may prioritize different metrics, such as real-time
performance, energy consumption, or accuracy. SCA allows
users to specify the “spotlight” parameter, which determines
the priority of each metric for a particular function. This
enables the system to make trade-offs among the different
objective functions in a way that is appropriate for the specific
needs of each function. Algorithm 1 shows the steps for
implementing SCA in our system.

In Algorighm 1, line 1-12 is the function to obtain the
state space and actions, line 13-17 is to obtain Pareto set,
line 18-23 is to select the best action based on the spotlight.
Accuracy is dichotomous, so a division is made directly in
line 17-18. Since time and cost are inversely related, we can
get Pareto set by the constraint set. SCA chooses the best
action among Pareto set, which can be completely determined
by spotlight finally.

In Algorithm 1, we focus on the matrices required by robot
application scenarios, which is different from traditional cloud
computing technology. As demonstrated in the algorithm,
we need to eliminate the hard metrics needed for robot
applications first, and then optimize. The robot has to choose
between the three indicators mentioned above, so there is
always one that it pays the most attention to, which is why
we call it “Spotlight”. In the code implementation, we use the
method of Online Learning to predict the transmission time,
and use the calculation index to predict the local consumption.
This is a dynamic process, that is, adapting to conditions
changes through dynamic decision making.

V. EXPERIMENTS AND COMPARISONS

To verify the effectiveness of RoboEC2, we demonstrate
offloadings of three common functions in robotics with
RoboEC2, as illustrated in Table. I. Homography estimation
plays an important role in SLAM initialization process and
grasping tasks. Object detection is essential in environment
perceptions of mobile robots as robotic dogs. Path planning is
one of the basic functions in self-driving cars. DNNs have
achieved state-of-the-art results in the above tasks. In the
experiments of this work, we try to offload these DNNs to
the cloud with RoboEC2 to achieve the goal we set at the
beginning of this paper and compare it with another three
approaches the local computation, the PoundCloud [26] and
the SOTA method [6], one of the previous best system paper
finalists of RSS. And The local is with Intel(R) Core(TM)
i7-7700HQ CPU and the cloud instance is Amazon EC2 P3.
According to the application scenarios of the three tasks,

TABLE I
ROBOTIC TASKS AND CORRESPONDING SCENARIOS

they pay more attention to accuracy, consumption and time
respectively. This gives the experiment a more comprehensive
measure of performances on different tasks in robotics.

The seleted SOTA method is the formulation of a novel
Robot Offloading Problem and the proposed solution using
deep reinforcement learning. The problem addresses the
issue of how and when robots should offload sensing tasks
to improve accuracy while minimizing the cost of cloud
communication, particularly in resource-constrained environ-
ments. The selected SOTA method has been demonstrated
to significantly improve vision task performance by up to
2.6 times that of benchmark offloading strategies through
simulations and hardware experiments using state-of-the-art
vision DNNs. This allows for the potential for robots to
significantly transcend their on-board sensing accuracy while
minimizing the cost of cloud communication. The selected
SOTA method won the best system award at the RSS
conference and It is by far the best algorithm for task
offloading of robots.

A. Cost Spotlight With A Time Constrain: The Experiment of
Object Detection

Object detection is a technology related to computer vision
that deals with detecting instances of semantic objects of a
certain class (such as humans, buildings, or cars) in digital
images and videos, which is a common function in robotics
especially mobile robots as robotic dog. At present, the best
object detection algorithms are all based on deep learning.
In this experiment, we respectively build a MobileNet [30] in
edge and a VGG19 [4] in cloud for the feature extraction. The
SOTA and RoboEC2 execute in an edge-cloud-collaboration
way and the baseline approach execute in an edge-only way.
Object detection is of great significance for mobile robots in
crowded scenes. Therefore, in this experiment, we assumed
that it would be applied to a crowded scene. In crowded scenes,
the speed of robots is not fast, so the constraint on time exists
but is limited. At the same time, the endurance of mobile
robots is important as robots that are capable of running in
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Fig. 8. Representative experimental results in object detection comparison between the baseline approach, the SOTA approach and RoboEC2.

TABLE II
PERFORMANCE COMPARISON ON THE OBJECT DETECTION TASK

crowds are always low-load. So we set the spotlight parameter
to cost and set a time constraint.

As illustrated the Table II and Fig. 8, RoboEC2 has
better performances compared with the baseline and SOTA
approaches in cost and accuracy metrics, while meeting time
constraints. For the PoundCloud, it offloads all computation
to the cloud but occurs to timeout in the process. As shown in
Fig. 8, with time constraints, completely wrong scenarios that
marked with red boxed appear in the previous SOTA method.
This is because the result of the previous frame is used in the
current frame in its decision action, which will not appear in
RoboEC2. So RoboEC2 wins this experiment.

B. Accuracy Spotlight: The Experiment of Homography
Estimation

A homography is a mapping between two images of a planar
surface from different perspectives. They play an essential
role in some robotic tasks. In this subsection, we acquire
the homography based on a learning method present in [8].
We build a shallow lightweight neural network that has
8 layers and a computationally intensive deep neural network
that as 19 layers, which will be applied in the experiment
of SOTA method and RoboEC2. The baseline approach is
totally local computing, and it will only use the shallow
lightweight network. Homography estimation generally occurs
during initialization, so there are limited requirements on time
but more on accuracy. So the Spotlight parameter of the
Spotlight Criteria Algorithm in RoboEC2 is accuracy. The
experimental results are as follows:

From the Table. III and Fig. 9, it can be shown that the
compared SOTA method, RoboEC2 and the PoundCloud all
achieve better accuracy when time is not limited. For the

Fig. 9. Representative experimental results in homography estimation
comparison between the baseline approach, the SOTA approach and RoboEC2.
Note: The SOTA and RoboEC2 have same outputs in the last column.

TABLE III
PERFORMANCE COMPARISON ON THE HOMOGRAPHY ESTIMATION TASK

metric of local cost, it is 0 in both SOTA method and RoboEC2
because the two upload all natural network computations to
clouds. Therefore, in this experiment, the PoundCloud, the
SOTA and RoboEC2 perform equally well.
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Fig. 10. Representative experimental results in path planning comparison
between the baseline approach, the SOTA approach and RoboEC2. In the
figure, the red arrow represents the label direction, the orange arrow represents
direction that the SOTA approach output, the blue arrow represents the
direction that RoboEC2 output, the green arrow represents the direction that
the baseline approach output. The red box represents the errors that happened
in the SOTA approach.

TABLE IV
PERFORMANCE COMPARISON ON THE PATH PLANNING TASK

C. Time Spotlight: The Experiment of Path Planning

Path planning is one the most import functions in self-
driving cars. Therefore, we assume that the offloading of this
experiment in this subsection is conducted in a self-driving
scenario. Similar to the above experiment, we build two natural
networks with different layers, a shallow that has 8 layers
and a deep has 20 layers. The two are trained with [23]. The
SOTA and RoboEC2 execute in an edge-cloud-collaboration
way and the baseline approach execute in an edge only way.
As we known, execute time is the most important in self-
driving scenarios, because the speed of the autonomous car
is relatively higher than other types of robots. There is no
doubt that the spotlight parameter in RoboEC2 is time in this
experiment. The results are illustrated in Table IV and Fig. 10.

As shown in Fig. 10 and Table. IV, similar to the
experimental results in the following experiment, RoboEC2
performs better in the metrics with constraints in this
experiment. Meanwhile, with the more enhanced time
constraint compared with the object detection experiment
in subsection V-A, the SOTA approach appears to have
more delayed decisions marked by the red box in Fig. 10,
which decreases the accuracy of the SOTA approach. For
the PoundCloud approach, it occured timeout because the
totally offloading approach and failed in this experiment.
So RoboEC2 wins in this experiment.

D. The Comparative Experiment With FogROS

SLAM is one of the common tasks for robots. In this
experiment, we perform simultaneous localization experiments
in SLAM leveraging pySLAM as present in Fig.11. We fuse
end-to-end Homograph estimation into pySLAM and opti-
mize the module leveraging RoboEC2. Fig. 12 shows the
experimental scenario. Meanwhile, we provide Fig. 12, an end-
to-end SLAM work, which is a potential application scenario.
Because end-to-end SLAM approaches have more accurate
performance than traditional SLAM approaches, but high

Fig. 11. The experimental scenario of SLAM. Simultaneous localization
modules are computing via RoboEC2.

Fig. 12. Figure from a published End-to-end SLAM approach named
Droid-slam. RoboEC2’s potential application scenarios for high computing
power required SLAM tasks.

computational resource requirements hinder their applications.
Therefore, we also provide the figure to demonstrate the
practical value of RoboEC2.

Fig. 13 depicts the performance comparison between
RoboEC2 and FogROS in the SLAM task, and also the
performance comparison between the algorithm-level system
and the node-level system. The first row of the figure shows
the computation with a network speed of 10M/s. In this case
of sufficient resources for the network speed, RoboEC2 and
FogROS take the same computing strategy, i.e., full cloud
computing. A larger performance improvement is achieved
compared to the fully local computation in the last row. This
also reflects the feasibility of cloud robotics. The second
row shows the computing in the case of network speed
5M/s, where the network resources are limited, RoboEC2
also takes a full cloud computing. The third and fourth rows
present a comparison for the case of network speed at 2M/s.
RoboEC2 takes different computing strategies compared to
FogROS, where RoboEC2 chooses actions that transfer less
data. It has allocated the computation elastically according
to the resources, resulting to a better performance. The
fifth and sixth rows show a comparison with a network
speed of 1M/s, a scenario with highly constrained network
speed, where RoboEC2 embodies a more superior performance
improvement, more than twice the performance of the node-
level FogROS.

Table V shows a comparison of experimental data results
for pure robot computing, FogROS, and RoboEC2. Also,
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TABLE V
COMPARISON OF EXPERIMENTAL RESULTS FOR PURE ROBOT-COMPUTING, FOGROS AND ROBOEC2 IN THE SLAM TASK

Fig. 13. Comparison of the results of FogROS and RoboEC2. The horizontal
axis is the time axis and the vertical axis is the network speed. The color
overlay part is fitted to the scatter, and the scale of the vertical axis is after
simultaneous adjustment according to the fit. The color overlay also reflects
the data transmission volume. The data transmission frequency reflects the
system performance. The bottom red line is a fully robot computing rate.

we compare CPU usage and power consumption, noting
that these two metrics are relative calculations that take
computation frequency into account. The bolded data in the
table shows the performance of RoboEC2, and the arrows on
its left side indicate the comparison with FogROS and the
arrows on the right side indicate the comparison with pure
robot computing. Red indicates an increase in the result of
the metric where it is located and a decrease in performance;
green indicates a decrease in the result of the metric where

TABLE VI
COMPARISON IN DIFFERENT MEASUREMENTS

it is located and an increase in performance; blue indicates a
constant result of the metric where it is located and no change
in performance. From the table, we can get that RoboEC2
completely improves the latency performance. For CPU usage
and power consumption performance, RoboEC2 also improves
performance in the vast majority of cases.

We can conclude from the SLAM experiments that
RoboEC2 is able to perform collaborative computing elas-
tically under different resource conditions, thus achieving
computing optimization. It achieves better performance
compared to the node-level FogROS.

E. Comparison From System Perspectives

Finally, we analyze four different cloud robotics computing
systems in a system perspective based on experimental
procedures and inference analysis, including totally local com-
puting, totally offloading to the cloud to compute (PoundCoud
and FogROS), the SOTA cloud robotics offloading approach
and the proposed RoboEC2. The metrics for the system,
as we mentioned in Section III-B, are shown in the first
column of the table below. With the experimental procedure,
the experimental results and the inference analysis, we are
able to obtain the results in the Table. VI. It presents a
comprehensive comparison in a system perspective between
the totally local computing system, the totally cloud computing
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system(PoundCoud and FogROS), the SOTA offloading
system and RoboEC2. The first two methods are rather
extreme and can achieve optimal performance in terms of
computation cost or communication delay, but may lead to
operational failure in other metrics. SOTA and RoboEC2
approaches are capable of achieving a balanced execution
based on the algorithm’s set of criteria. RoboEC2 demonstrates
the best overall evaluation when compared to existing
approaches.

VI. CONCLUSION

In this work, we have presented a novel cloud robotic
system, RoboEC2, which is designed to provide service-
level performance to resource-constrained mobile robots. The
key focus of our system is to enable robots to offload
computationally expensive tasks, such as perception and
decision-making, to cloud servers in order to improve their
overall performance and efficiency. To achieve this goal,
we have implemented a number of key technologies and
algorithms, including a dynamic network offloading approach
and the Spotlight Criteria Algorithm, which is responsible for
making optimal offloading decisions based on a combination
of factors including accuracy, time, and cost. Our system is
flexible, convenient, and robust, and is capable of operating
under a wide range of conditions, including in disconnected
environments. Through our analyses and experiments, we have
demonstrated that RoboEC2 outperforms the state-of-the-art
approach in a number of metrics. In future work, we plan to
further analyze the impact of data loss in communications on
the performance of our system.

DNN models typically have two types of structures:
topology type and chain type. For chain type DNN models
like RNNs, the amount of intermediate data is typically large,
so collaborative edge computing is less effective. Most existing
work focuses on directly offloading the entire model to the
cloud for inference. For example, [28] notes that “given the
complexity of RNN-based inference, IoT devices typically
offload this task to a cloud server.” [41] proposes a fuzzy
logic-based strategy to decide whether to offload an RNN-
LSTM model to edge, fog or cloud. [14] observes that
“Compared to CNNs, RNNs have larger memory footprints,
and memory access of the fully connected weight matrices
dominates power consumption. RNNs are usually computed
on the cloud, which introduces large and variable latency.”
In summary, the literature generally treats chain type models
separately and focuses on offloading the entire model to the
cloud. Our work focuses on topology type DNN models in
cloud robotics; handling diverse model structures spanning
both topology and chain types remains an open challenge.
To address this challenge, we are currently working on a
new approach that allows us to offload DNN models in the
form of a parameter set, which enables us to break free
from the structural constraints of DNN models. This approach
allows us to handle a wide range of DNN models and
to deploy them in a variety of cloud robotics applications.
As soon as we complete the development of this approach,
we plan to publish a new paper to share our results and to
contribute to the field. In addition, we will update our cloud

robotics system to version 2.0, which will incorporate this new
capability.
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