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GT of known (truck, car) GT of unknown (golf cart) Predicted cyclist Predicted pedestrian

Predicted carPredicted truck Predicted unknown

(a) Ground truth (b) Closed-set 3D object detection (c) Open-set 3D object detection

Figure 1. Illustration of our proposed open-set 3D object detection. GT means ground truth. Classical closed-set object detection can only
predict the classes involved during training, so it cannot handle unknown classes, often regarding them as known classes by mistake. The
golf cart is not included in the training dataset, and the closed-set detection predicts these points as the pedestrian and cyclist (middle). By
contrast, our proposed open-set object detection classifies these points as an unknown class, and gives the accurate bounding box (right).

Abstract

3D object detection has been wildly studied in recent
years, especially for robot perception systems. However,
existing 3D object detection is under a closed-set condition,
meaning that the network can only output boxes of trained
classes. Unfortunately, this closed-set condition is not ro-
bust enough for practical use, as it will identify unknown
objects as known by mistake. Therefore, in this paper, we
propose an open-set 3D object detector, which aims to (1)
identify known objects, like the closed-set detection, and (2)
identify unknown objects and give their accurate bounding
boxes. Specifically, we divide the open-set 3D object de-
tection problem into two steps: (1) finding out the regions
containing the unknown objects with high probability and
(2) enclosing the points of these regions with proper bound-
ing boxes. The first step is solved by the finding that un-

known objects are often classified as known objects with
low confidence, and we show that the Euclidean distance
sum based on metric learning is a better confidence score
than the naive softmax probability to differentiate unknown
objects from known objects. On this basis, unsupervised
clustering is used to refine the bounding boxes of unknown
objects. The proposed method combining metric learning
and unsupervised clustering is called the MLUC network.
Our experiments show that our MLUC network achieves
state-of-the-art performance and can identify both known
and unknown objects as expected.

1. Introduction

3D object detection plays an important role in many per-
ception systems, such as autonomous driving and robotics.

1
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LIDAR is a popular sensor to obtain the 3D point cloud
for 3D object detection due to its robustness to the en-
vironment. Therefore, various deep learning-based meth-
ods [1, 2, 3, 4, 5] have been proposed to tackle this point
cloud object detection problem. However, classical 3D ob-
ject detection operates under a closed-set condition, mean-
ing the network only outputs boxes of trained classes. Such
a closed-set system will wrongly assign labels of known
classes to unknown objects, which could have disastrous
consequences in real-world applications [6]. Therefore, a
method for 3D object detection with an open-set condition
is needed, as illustrated in Fig. 1.

Open-set classification and semantic segmentation tasks
are the foundations of the open-set object detection task.
Two mainstream approaches to solve the open-set image-
level and pixel-level classification problems are uncertainty
estimation-based methods [7, 8, 9] and generative-based
methods [10, 11, 12]. However, these methods cannot be
adapted to the open-set object detection directly as clas-
sification tasks do not have to consider whether an object
exists or the location of the object. Recently, open-set 2D
object detection has been systematically formulated [13],
and a dropout sampling-based method [14] and prototypical
learning-based method [15] have been proposed to detect
unknown objects. The only previous research that operates
under the open-set 3D condition was proposed by Kelvin
et al. [16], who use class-agnostic embeddings to cluster
unknown objects to solve the open-set 3D instance segmen-
tation task. Inspired by this open-set 2D object detection
and 3D instance segmentation, we propose the first open-
set 3D object detector, which is able to identify both known
and unknown objects in 3D space, using weaker supervision
(bounding boxes) instead of point-level annotations.

Towards the goal of recognizing unknown objects in the
LIDAR point cloud, we firstly propose a naive open-set 3D
object detector and analyze the difficulty of the open-set
3D object detection task. We find that the naive detector
cannot handle the task well, as it mis-classifies known ob-
jects as unknown objects, generates lots of false positives
of unknown objects, and places inaccurate bounding boxes
for unknown objects. To solve these problems, we propose
a novel perception system: the Metric learning with Un-
supervised Clustering (MLUC) network. Specifically, we
use metric learning to identify boxes with low confidence
scores, and regard these regions as having a high probabil-
ity of containing unknown objects. On top of this, an unsu-
pervised clustering algorithm is used to generate the precise
bounding boxes of unknown objects. In summary, our con-
tributions are the following:

• We are the first to introduce open-set 3D object de-
tection task, which is more suitable than closed-set
for real-world applications such as autonomous driv-
ing and robotics.

• We analyze the shortcomings of the naive open-set 3D
object detector, which straightforwardly extends the
closed-set 3D detector to the open-set task.
• To solve the problems of the naive open-set 3D ob-

ject detector, we develop the MLUC network, which
combines metric learning and unsupervised clustering
to identify both known and unknown 3D objects. We
show that our MLUC network achieves state-of-the-art
performance compared with other baselines.

2. Related Work
2.1. Closed-set 3D Object Detection

Classical closed-set 3D object detection methods can be
divided into two types: grid-based methods and point-based
methods.

Grid-based methods transform irregular point data to
regular grids so that the data can be processed by a 2D
or 3D convolutional neural network (CNN). MV3D [17]
firstly projects the 3D point data to 2D bird’s-eye-view
grids and then applies a 2D object detection method to gen-
erate bounding boxes. Following MV3D, more efficient
frameworks with a bird’s-eye-view representation are pro-
posed [18, 19]. VoxelNet [2] divides the point clouds into
3D voxels and applies a 3D CNN to extract features, and
SECOND [1] introduces 3D sparse convolution [20] for ef-
ficient processing.

Point-based methods mostly rely on PointNet [3] and its
variants [4, 21]. PointRCNN [22] is a typical two-stage
point-based 3D object detector, while 3DSSD [23] intro-
duces F-FPS and is the first one-stage point-based 3D object
detector.

These closed-set 3D object detection methods achieve
remarkable performance on autonomous driving datasets,
such as the KITTI dataset [24] and Waymo open
dataset [25]. However, they operate under the closed-set
condition, and cannot predict unknown objects, which is
different to the case in the open world.

2.2. Open-set 2D Object Detection

Dhamija et al. [13] systematically study the open-set per-
formance of common 2D object detectors [26, 27, 28], and
they find that unknown objects from the open world end
up being incorrectly detected as known objects, often with
very high confidence. Miller et al. [14] use Monte Carlo
Dropout [7] sampling to measure the uncertainty scores of
detected boxes, and regard high uncertainty boxes as un-
known objects. Recently, Joseph et al. [15] adopted proto-
typical learning with contrastive clustering and an energy-
based identifier to detect unknown objects. We draw inspi-
ration from these open-set 2D object detection methods, to
propose our MLUC network to address the open-set object
detection problem in 3D space.
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2.3. Open-set 3D Instance Segmentation

The open-set 3D instance segmentation (OSIS) network,
proposed by Kelvin et al. [16] is the only previous research
to focus on perception under open-set 3D space conditions.
The authors use the embedding head to extract the class-
agnostic embeddings for each point as well as prototypes
for each instance of the known class. During inference,
the prototypes collectively filter out points from the known
classes whose embeddings are close enough to the proto-
types. Then, the remaining points not assigned to any pro-
totypes are clustered into instances of the unknown class
based on their embeddings. On top of their OSIS network,
we use bounding boxes to enclose the unknown instances,
so that this modified OSIS method can be one of the base-
lines of open-set 3D object detection task.

3. Open-set 3D Object Detection
In this section, we formulate the definition of open-set

3D object detection. We define the class set of the training
dataset as Dtrain = {1, 2, ..., C}. In classical closed-set
3D object detection, the class set of the test dataset is the
same as that of the training dataset, meaning that Dtest =
Dtrain = {1, 2, ..., C}. However, in the open-set 3D ob-
ject detection, we assume that the test dataset contains more
categories than the training dataset, which is more close to
real applications. Therefore, under the open-set condition,
Dtest = {1, 2, ..., C, C + 1, C + 2, ..., C + n} ⊇ Dtrain.
The label of the training dataset is the bounding boxes set
Btrain = {bi|i = 1, 2, ...,m}, where m refers to the to-
tal number of bounding boxes in the training set. Each
box can be represented by bi = [c, x, y, z, w, l, h, θ], where
c ∈ Dtrain, x, y, z, w, l, h, θ refer to the class, center coor-
dinates, size and rotational angles along z axis of the box.
The label of the test set is similar to that of the training set,
except that the test set has a larger class set space.

The purpose of the open-set 3D object detection is
to train a neural network to not only identify trained
C object classes, but also assign the ’unknown’ label
to those classes not encountered during training that are
{C + 1, C + 2, ..., C + n}, as well as use correct bound-
ing boxes to enclose the corresponding points, as shown in
Fig. 1.

4. Naive Open-set 3D Object Detector
Suppose the output of the classical closed-set 3D object

detector is B̂close =
{
b̂i|i = 1, 2, ..., m̂

}
, and each b̂i =

[ĉ, ŝ, x̂, ŷ, ẑ, ŵ, l̂, ĥ, θ̂], where ĉ, ŝ, x̂, ŷ, ẑ, ŵ, l̂, ĥ, θ̂ refer to
predicted class, confidence score, center coordinates, size
and rotational angle of the predicted box. Specifically, the
confidence score ŝ is determined by:

ŝ = max {p̂i|i = 1, 2, ..., C} , (1)

(a) Image (b) Ground truth

(c) Closed-set results (d) Open-set results

A
E

D

C

B
A

E

D

C

B

GT of known (pedestrian)
GT of unknown (golf cart)

Predicted cyclist

Predicted pedestrian
Predicted unknown

Figure 2. Prediction example of the naive open-set 3D object de-
tector. Objects A, B, C, and D have low confidence scores, so they
are classified as unknown objects by the naive open-set 3D object
detector.

where pi refers to the softmax probability of a certain class.
The most natural way to solve the open-set 3D object

detection problem is to regard those boxes whose confi-
dence scores are smaller than a threshold (ŝ < λnaive) as
unknown objects, which we call the naive open-set 3D ob-
ject detector. We use this method as one of the baselines.
One visualization of the naive open-set 3D object detector
is shown in Fig. 2. We can see that although this method is
straightforward and simple enough, it has several problems.

Mis-classifies known objects as unknown objects. It
is possible to mis-classify some known objects as un-
knowns [7, 29, 9]. The reasons include two folds. On one
hand, the prediction of unknowns highly depends on closed-
set predictions. Since the whole probability space is divided
for known objects and there is no remaining space for un-
known objects, a foreground object might get mis-classified
as unknowns due to a relatively low confidence score or
high threshold. On the other hand, only one class, which
owns the maximum softmax probability, gets considered in
estimating unknown objects. The naive method does not
exploit the information of the other classes. In Fig. 2, the
known object D is classified as unknown by mistake.

Generates many false positive unknown objects. In
our experiments, we find that the 3D detector tends to clas-
sify unknown objects to multiple known objects. For exam-
ple, the golf cart in Fig. 2 is divided into two pedestrians
and one cyclist. If we regard all of these objects as un-
known objects, more false positive unknown objects will

3
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Metric
Learning
Network

Raw Data Points Closed-set Detection Results
Embedding Space

Prototypes

Embeddings

Proposal Regions of Unknown Box refinement of Unknown Open-set Detection Results

Predicted cyclist Predicted pedestrian Predicted carPredicted truck Predicted unknown

Figure 3. The pipeline of our MLUC network. A metric learning network is applied for the raw data points to obtain the closed-set detection
boxes and corresponding embeddings. Those boxes whose embedding is located at the center of the embedding space are regarded as low-
confidence-score boxes. We randomly pick one point from each low-confidence-score box and obtain the proposal regions of unknown
objects using picked points as centers. Then unsupervised clustering is used to refine the boxes of unknown objects. In this way, our MLUC
network can identify both known and unknown objects to fulfill the open-set 3D object detection task.

be induced. If we filter these bounding boxes using non-
maximum-suppression (NMS) with negative softmax prob-
ability score, it will make the bounding boxes inaccurate,
which will be discussed in the next paragraph.

Generates inaccurate bounding boxes for unknown
objects. The size of the predicted boxes from the naive
method is very close to the pre-defined anchor size. There-
fore, if we only change the labels of some boxes to ’un-
known’ but keep the size unchanged, the corresponding
boxes cannot enclose the points of unknown objects very
well. For example, in Fig. 2, the boxes of the pedestrians
and cyclists do not match the size of the golf cart. This is
why open-set object detection is more difficult than open-
set classification.

5. MLUC Network

To solve the problems of the naive open-set 3D object
detector, we propose the MLUC network. We use the Eu-

clidean distance sum in metric space to measure the uncer-
tainty, and we show that it is a better confidence score com-
pared with the naive maximum softmax probability. There-
fore, metric learning helps us find more reliable regions
containing unknown objects. On this basis, unsupervised
clustering is applied on each proposal region of unknown
objects, so that the bounding boxes of unknowns get well
refined. Finally, bounding boxes generated for unknown
objects will be processed by NMS to filter out overlapping
results. In this way, we can obtain more accurate bound-
ing boxes for unknown objects and suppress false positives.
The pipeline of the MLUC network is shown in Fig. 3.

5.1. Deep Metric Learning

The classification branch of a typical object detection
network is composed of two parts: a feature extractor to
obtain the high-dimensional features and a classifier to gen-
erate the decision hyper-plane. However, this feature ex-

4
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Figure 4. Illustration of our unsupervised clustering algorithm. (a): Closed-set detection results. (b): Proposal regions of unknown objects.
(c): Depth clustering from the start point. (d) Depth clustering mechanism. (e) Depth clustering results. (f) Using a new bounding box to
enclose the clustering results. (g) Predicted unknown objects.

tractor and classifier structure is not suitable for unknown
objects detection, as the network assumes that all feature
space is assigned for known objects, and there is no space
left for unknown objects [30]. Therefore, we replace the
classifier by the Euclidean distance representation with all
prototypesMin =

{
mt ∈ R1×C |t ∈ {1, 2, ..., C}

}
, where

mt refers to the prototype of class Dtraint . The feature ex-
tractor f(X) is designed to learn the embedding vector in
the metric space of each input box X. In this way, the prob-
ability of box X classified as the class Dtraint is formulated
as:

pt(X) =
exp(−‖f(X)−mt‖2)∑C
t′=1 exp(−‖f(X)−mt′‖2)

. (2)

Then we can apply this Euclidean distance-based probabil-
ity to define the loss function:

L =
∑
−log(

exp(−‖f(X)−mY‖2)∑C
k=1 exp(−‖f(X)−mk‖2)

), (3)

where Y is the ground truth class of the input box X. This
loss function has two effects on the learned embedding vec-
tors: (1) The embedding vector will be attracted by the pro-
totype of the same class, which is affected by the numerator
of the loss function. (2) The embedding vector will be re-
pelled by the prototypes of other classes, which is affected
by the denominator of the loss function. In this way, the em-
beddings of known objects will be close to the correspond-
ing prototypes of the same class, while the embeddings of
unknown objects will be distributed in the center of the em-
bedding space as they are repelled by all known prototypes,
as illustrated in Fig. 3.

Based on this metric learning framework, we propose to
use the Euclidean distance sum (EDS) to measure the un-

certainty. The EDS is defined as:

EDS =

C∑
t=1

‖f(X)−mt‖2. (4)

Unknown objects are supposed to have smaller a EDS
as they are in the center of the embedding space. Com-
pared to the maximum softmax probability, this EDS con-
siders all classes explicitly. The boxes whose EDS score is
smaller than a threshold (EDS < λEDS) are considered to
contain unknown objects. As EDS is class-independent, all
prototypes of known classes are designed to be evenly dis-
tributed in the embedding space and stable during training.
We define the prototype in a one-hot vector form: only the
tth element of mt is C, while others remain zero, where
t ∈ {1, 2, ..., C} [31].

5.2. Unsupervised Clustering

After we obtain the low-confidence-score bounding
boxes, we regard them as the proposal regions of unknown
objects and apply unsupervised clustering to refine them.
Fig. 4 shows the process of our unsupervised clustering al-
gorithm.

The first step is to find the proposal regions of unknown
objects based on the obtained EDS of each predicted box.
Those boxes whose EDS is smaller than a threshold λEDS
are considered to have high a probability of containing un-
known objects. Then we randomly pick one point from each
low EDS box, and set up the proposal regions of unknown
objects with the cylinders whose centers are picked points
and radius is r, as shown in Fig. 4 (a) and (b).

The second step is to cluster points of unknown ob-
jects in the proposal regions. We execute the depth clus-
tering [32] algorithm to find the points of unknown objects.
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The principle of depth clustering is illustrated in Fig. 4 (d).
O is the original point, which is also the location of the LI-
DAR. A and B are two points for which it is to be decided
whether they belong to the same object or not. The point
which is far away from O is A and the other is B. If θ is
smaller than a threshold λθ, A and B are considered to be-
long to one object. We start iterations from the center of the
proposal regions, and the points which are seen to belong to
the same object with the start point will be the start point of
the next iteration, until all points in the proposal region are
decided. The red points in Fig. 4 (e) are considered to be
the points of one unknown object.

The third step is to use a tight bounding box to enclose
the points of unknown objects, and then use NMS to post-
process all obtained bounding boxes of unknown objects,
with larger bounding boxes having higher priority, as shown
in Fig. 4 (f) and (g).

We summarize our unsupervised clustering method in
Algorithm 1. B̂close =

{
b̂i|i = 1, 2, ..., m̂

}
represents the

output closed-set bounding boxes of the metric learning,
and b̂i[ŝ] is the corresponding EDS value.

6. Experiments

6.1. Experimental Setup

Datasets: We evaluate the performance of our MLUC net-
work on two datasets.

UDI dataset is a self-driving dataset with LIDAR point
clouds collected from an industrial park. Six classes in-
cluding car, pedestrian, cyclist, truck, golf cart, and fork-
lift, are annotated in the UDI dataset. In our experiments,
four classes, car, pedestrian, cyclist, and truck, are treated
as known objects, while the other two classes, golf cart, and
forklift, are regarded as unknown objects and not involved
during training. There are a total 200k known objects in the
training set and 12k known objects as well as 600 unknown
objects in the test set.

KITTI dataset [24] is one of the most popular open-
source datasets of 3D object detection for autonomous driv-
ing. Three common classes, car, pedestrian, and cyclist, are
used as known objects, while the van and truck are used
as the unknown classes and not included during training.
There are 8690 training objects and 6100 test objects in our
experiments, with the test objects composed of 4845 known
objects and 1255 unknown objects.

Evaluation metrics: For known objects, we use the
3D mean average precision (mAPknown) to evaluate the
performance, while for unknown objects, we report the
recallunknown and 3D average precision (APunknown).
Then, the metric mAPharm is used to comprehensively

Algorithm 1: Unsupervised Clustering Method

Input: B̂close =
{
b̂i|i = 1, 2, ..., m̂

}
Output: Bounding boxes of unknown objects B̂unknown

1 P = [ ];
2 for b̂i in B̂close do
3 if b̂i[ŝ] < λEDS then
4 randomly pick one point p inside b̂i;
5 P .append(p);
6 end
7 for p in P do
8 Q = [p]; Q̄ = R = [ ];
9 while Q is not empty do

10 t=Q.top(); Q.pop(); Q̄.append(t); R.append(t);
11 Nt = the neighbor point set of t;
12 for s in Nt do
13 if s in Q̄ or sp > r then
14 continue
15 Llong = max(Os,Ot);
16 Lshort = min(Os,Ot);
17 d = st;

18 θ = arccos(
L2

long+d
2−L2

short

2dLlong
);

19 if θ < λθ then
20 Q.append(s)
21 else
22 Q̄.append(s)
23 end
24 end
25 end
26 b̂unknown = the bounding box enclosing R tightly;
27 B̂unknown.append(b̂unknown);
28 end
29 B̂unknown=NMS(B̂unknown);

evaluate the overall performance [33]:

mAPharm =
2 ∗mAPknown ∗APunknown
mAPknown +APunknown

, (5)

Baselines: As we are the first to propose the open-set 3D
object detection task, there are no formal baselines from
other research. Therefore, we adopt the naive open-set 3D
object detector and modified OSIS network, which have
been discussed in Sections 4 and 2.3 respectively, as our
baselines.

Implementation details: We adopt SECOND [1] as our 3D
object detector for both the UDI and KITTI dataset.

For the UDI dataset, the detection range of the point
clouds is [−51.2, 51.2] m for both the X and Y axis, and
[−5, 3]m for the Z axis. We use the ADAM [34] optimizer
with learning rate 0.003 and momentum 0.9. The network is
trained on one NVIDIA 2080Ti for 20 epochs with a batch
size 4. The IoU threshold during evaluation is 0.5 for car,

6
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Figure 5. The performance of Naive, OSIS and MLUC methods on UDI (left) and KITTI (right) dataset. For each confidence score
threshold, we can obtain a data point (Recallunknown, APunknown,mAPknown). The two graphs contain the results of APunknown and
mAPknown with regard to Recallunknown.

pedestrian, and cyclist, 0.7 for truck, and 0.1 for the un-
known objects, i.e., golf cart and forklift. The evaluation
difficulty is easy.

For the KITTI dataset, the detection range is [0, 70.4]m
for theX axis, [−40, 40]m for the Y axis, and [−3, 1]m for
the Z axis. The learning process setting is the same as the
UDI dataset except that we train the model for 80 epochs on
the KITTI dataset. The IoU threshold during evaluation is
0.7 for car and truck, 0.5 for pedestrian and cyclist, and 0.1
for the unknown objects, i.e., van and truck. The evaluation
difficulty is moderate.

The λθ in the unsupervised clustering is 65◦, and r is
4m and 5m for the UDI and KITTI dataset respectively.

6.2. Results

The specific open-set 3D object detection results are re-
lated to the confidence thresholds (λnaive for Naive method
and OSIS method, and λEDS for MLUC method). There-
fore, we plot the results for the UDI and KITTI dataset of
APunknown and mAPknown with regard toRecallunknown
in Fig. 5, where each data point is the result of one specific
threshold. Fig. 5 shows the mAPknown reduces with the
growth of Recallunknown, because more known objects are
regarded as unknown objects with the growth of the confi-
dence score threshold. So we only record the points whose
mAPknown is not reduced by 10% to ensure the high per-
formance of the known classes. Then we pick the result
with the best mAPharm to represent the optimal perfor-
mance of each method, and these are recorded in Table 2.

Fig. 5 and Table 2 show that our MLUC method has
the best APunknown and mAPharm compared with the
Naive method and OSIS method. From Fig. 5, we also find
that the Naive method and MLUC method have a larger
Recallunknown than the OSIS method when mAPknown
decreases within 10%. This is because an unknown object

is often classified as several overlapping known objects, as
shown in Fig. 1 and 2, and in the OSIS method, points will
only be considered to be part of unknown objects when all
boxes that include them have higher confidence scores than
the threshold. In contrast, the Naive method and MLUC
method only require the lowest score of these overlapping
boxes to be higher than the threshold. Two visualization
results are shown in Fig. 6.

To validate the effectiveness of the metric learning and
unsupervised clustering in the MLUC method, we con-
duct ablation experiments and show the results in Table 1.
It shows both metric learning and unsupervised clustering
make a contribution to the better open-set detection perfor-
mance.

UDI dataset
ML UC mAPknown APunknown mAPharm
5 5 75.3 3.0 5.7
X 5 78.7 8.3 15.1
X X 79.4 13.2 22.6

KITTI dataset
ML UC mAPknown APunknown mAPharm
5 5 63.8 3.9 7.3
X 5 66.1 5.8 10.6
X X 66.8 9.7 16.9

Table 1. Ablation experiment results of MLUC method. ML and
UC refer to metric learning and unsupervised clustering respec-
tively.

7. Conclusion
In this paper, we propose open-set 3D object detec-

tion to identify both known and unknown objects in 3D
LIDAR point clouds. We show that our metric learning

7
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Dataset UDI KITTI

Methods mAPknown APunknown mAPharm mAPknown APunknown mAPharm

Closed-set 78.9 0 0 70.5 0 0
Supervised 78.4 61.7 69.1 76.6 80.6 78.5

Naive 75.3 3.0 5.7 63.8 3.9 7.3
OSIS 74.1 1.1 2.1 65.9 1.1 2.2
MLUC 79.4 13.2 22.6 66.8 9.7 16.9

Table 2. Optimal performance of open-set 3D object detection. Supervised method means we include the unknown classes in the training
set and retrain the model, so it is the upper bound of the open-set detection performance. We show that our MLUC method achieves the
best performance among all baselines.

(a.ⅰ) (a.ⅱ) (a.ⅲ)

(a.ⅳ) (a.ⅴ) (a.ⅵ)

(b.ⅰ) (b.ⅱ) (b.ⅲ)

(b.ⅳ) (b.ⅴ) (b.ⅵ)

GT of known GT of unknown Predicted cyclist Predicted pedestrian Predicted car Predicted unknown

Figure 6. Visualization of some qualitative results. (a) UDI dataset; (b) KITTI dataset; (i) Image; (ii) Ground truth; (iii) Closed-set
results; (iv) Naive method; (v) OSIS method; (vi) MLUC method. Golf cart and truck are unknown objects for UDI and KITTI dataset
respectively. (a.iii) and (b.iii) show that unknown objects are classified as known objects by mistake. The Naive method cannot provide
accurate bounding boxes for unknown objects according to (a.iv) and (b.iv). The OSIS method regards other stuff things including trees
and walls as unknown objects, as shown in (a.v) and (b.v). Our MLUC method can provide accurate locations and boxes of unknown
objects, as indicated in (a.vi) and (b.vi).

with unsupervised clustering (MLUC) method achieves the
best performance compared with the Naive method and
OSIS method on the UDI and KITTI datasets. The per-
formance gap between our MLUC method and supervised

upper bound indicates that this open-set 3D object detec-
tion problem can be further studied. We hope our work can
draw more researchers to contribute to this practically valu-
able research direction.
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