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Abstract

Indoor localization based on Visible Light Communication (VLC) has
been in favor with both the academia and industry for years. In this
paper, we present a prototyping photodiode-based VLC system towards
large-scale localization. Specially, we give in-depth analysis of the design
constraints and considerations for large-scale indoor localization research.
After that we identify the key enablers for such systems: 1) distributed
architecture, 2) one-way communication, and 3) random multiple access.
Accordingly, we propose Plugo — a photodiode-based VLC system con-
forming to the aforementioned criteria. We present a compact design
of the VLC-compatible LED bulbs featuring plug-and-go use-cases. The
basic framed slotted Additive Links On-line Hawaii Area (ALOHA) is ex-
ploited to achieve random multiple access over the shared optical medium.
We show its effectiveness in beacon broadcasting by experiments, and
further demonstrate its scalability to large-scale scenarios through simu-
lations. Finally, preliminary localization experiments are conducted using
fingerprinting methods in a customized testbed, achieving an average ac-
curacy of 0.14m along with a 90-percentile accuracy of 0.33m.

1 Introduction

Location awareness is critical to many indoor applications [1–3], e.g., way-
finding in a metro station, industrial unmanned ground vehicle (UGV) navi-
gation in a warehouse, and location-based services (LBS) in retail. As reported
by MarketsandMarkets recently, the global indoor location market is projected
to grow to USD 23.13 billion by 2021 [4]. While GPS has effectively solved the
ubiquitous localization problem in most outdoor scenarios, a seamless indoor
localization solution remains challenging that is capable of providing a compar-
ative user experience to what GPS has done outdoors [3]. It is expected to be
accurate, responsive, lightweight, scalable, robust, low-cost and ubiquitous.

Previously, many RF-based localization methods were proposed mainly by
the wireless communication community and normally achieved accuracies around
several meters owing to the multipath fading effect [5]. Also, decimeter-level ac-
curacies were feasible at the cost of sophisticated hardware components. Mean-
while, approaches like Simultaneously Localization and Mapping (SLAM) [6,7]
along with visual-inertial odometry [8] have been pervasively studied in robotics,
since localization is fundamental to many robot problems such as navigation
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[9, 10] and path planning [11]. A centimeter-level accuracy could be easily
achieved using a laser-based SLAM technique yet at the expense of high sen-
sor cost. Odometry methods are prone to drift and lack global references. An
expected indoor localization solution should seek a reasonable balance between
the system performance and cost so as to achieve widespread adoptions in large-
scale environments. It is believed that VLC-based localization is a promising
technology to fill this gap [2, 12].

Unlike conventional RF-based localization methods [13–18] that require mul-
tiple dedicated wireless access points (e.g., WiFi ad-hocs and Bluetooth beacons)
to communication and localization, VLC-based methods leverage the existing
LED lighting infrastructure which already serves its primary function of illumi-
nation in most indoor scenarios. In contrast, the inherited benefits are twofold:
lower-cost versus better-accuracy. LED lights are gradually replacing the con-
ventional incandescent and fluorescent lighting fixtures thanks to the higher
energy-efficiency and longer life-time of high-powered white LEDs, to name a
few. We may safely vision that the LED lighting infrastructure will be ubiqui-
tous indoors. From the standpoint of venue owners, the investment is moderate
on VLC-compatible LED lights with respect to dedicated wireless beacons in
the long run. Besides, a better localization accuracy could be expected as VLC
signals are highly directional and immune to multipath fading effects that used
to be suffered by RF signals. The dense deployment of lighting fixtures also
contributes to better localization performance. In fact, we witness that some
giant corporations have devoted to the R&D on this technique, e.g., Qualcomm,
Phillips, GE, and Acuity. For instance, Lumicast [3], a state-of-the-art VLC-
based localization solution announced by Qualcomm, shows a centimeter-level
positioning accuracy at an update rate of 30 Hz on a commercial smartphone.
Inspired by these observations, we believe that LED lights shine a promising
opportunity to the ubiquitous indoor location service in the near future.

During the last decade, increasing studies on VLC-based localization meth-
ods have emerged in the literature. They can be generally divided into camera-
and photodiode-based directions with respect to the adopted VLC receivers [12].
Currently, camera-based methods are about to go mainstream in the industry
benefiting from the following gains:

1. No extra hardware modification or accessories required on the receiver
side since inbuilt front-facing cameras with a megapixel resolution are
commonly available in modern smartphones;

2. No dedicated multiple access schemes needed thus simplifying the design
of VLC transmitters because cameras are capable of spatial discrimination
of clustered lighting fixtures;

3. Providing high-accuracy 3D position and heading information using angle-
of-arrival (AOA) localization algorithms as cameras are inherently AOA
sensors with millions of tiny “antennas”.

Nonetheless, some intrinsic drawbacks remain unsolved. To be specific, camera-
based localization systems impose some of the following constraints on a real
use-case:

1. Power-consuming. First of all, the inbuilt camera of a smartphone con-
sumes around 300mW while being kept on during the whole localization
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process [19]. Moreover, it is computational demanding to process the ac-
quired high-resolution images leading to more battery drain [1];

2. Relying strictly on a line of sight (LOS) view from densely deployed light-
ing fixtures. This is subject to the AOA-based algorithm and limited
field of view (FOV) of existing front-facing cameras. However, the LOS
condition does not always hold;

3. Requiring the registration of all the light beacons with explicit 3D loca-
tions. It is a common headache of all the model-based localization meth-
ods. The deployment process in a large-scale environment tends to be
tedious, labor-intensive, and time-consuming especially when lacking a
detailed blueprint with updated configurations of lighting fixtures.

Besides, a salient barrier of photodiode-based methods for commercial de-
ployment is that existing light sensors on smartphones are unsuitable for VLC
usage owing to the confined frequency response. Additional multiple access
schemes are required to differentiate spatially distributed lights within the sensor
FOV due to the lack of spatial discrimination of photodiodes. In addition, local-
ization methods that rely on RSS measurement are vulnerable to the fluctuation
of VLC signals due to the ambient disturbance, such as shadowing and reflec-
tion. However, photodiode-based methods deserve further investigation owing
to the benefits in nature: 1) Energy-efficient thus not draining the battery hard;
2) Lightweight since the signal processing is much simpler than that of camera-
based methods; 3) LOS-view independent and free of location registration when
using model-free localization methods (e.g., fingerprinting). Previously, a vari-
ety of photodiode-based localization systems were proposed through simulation
and experiments [20–22], and different kinds of multiple access schemes were
introduced [23–25]. Most of these studies evaluated the system performance in
a room-size or table-size testbed, while only a few considered the scalability in
large-scale scenarios.

To grant reliable localization performance, the end user requires a set of
simultaneous observations of multiple light beacons. A fundamental problem is
how to achieve reliable beacon broadcasting over the shared light medium on top
of commercial LED lights. In this paper, we focus on the beacon broadcasting
problems of a photodiode-based localization system aiming at mass deployment
in large-scale environments. Stimulated by Epsilon [20] especially the random
multiple access scheme, we especially take into consideration the design con-
straints arising from commercial LED lights with emphasis on the requirements
of the large-scale indoor localization.

We propose Plugo (named after “Plug and Go”) in this paper, a dedicated
VLC system which is capable of providing reliable beacon broadcasting over
a shared optical medium from multiple LED bulbs to a single photodiode re-
ceiver. It deviates from the general VLC systems [26] developed in the wireless
communication community that pursues high data throughput along with bidi-
rectional communication. The key differentiation points of Plugo are threefold:
1) distributed architecture, 2) one-way communication, and 3) random multiple
access. Compared with our previous work [22, 27], Plugo moves a small step
further towards the expected localization technology.

Specifically, we stress our novel contributions as follows:
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1. Identifying the key enablers to a photodiode-based VLC system towards
large-scale localization through in-depth analysis of the design constraints
and considerations;

2. Design, implementation, and evaluation of such a VLC system that is easy
to use in a plug-and-go fashion;

3. Implementation of a basic framed slotted ALOHA (BFSA) random mul-
tiple access scheme with practical issues taken into account. This is the
first experimental demonstration in this community to the best of our
knowledge.

The remainder of this paper is organized as follows. Section II discusses from
scratch the design constraints and considerations; The detailed system design
and implementation are described in Section III and Section IV respectively;
Section V demonstrates the evaluation results; Finally, we conclude this paper
in Section VI.

2 Design Constraints and Considerations

2.1 Commercial LED lights

LED lights comprise a number of high-powered white LEDs, which can be
switched on and off rapidly to convey information via VLC at a high frequency
imperceivable to human eyes [26]. The basic principle of VLC is intensity mod-
ulation and direct detection (IM/DD). This is because visible light emitted by
white LEDs is inherently noncoherent light with a broad spectrum. It is unlikely
to modulate either the frequency or phase of visible light itself. The most widely
adopted white LED in luminaries is made of a blue LED with a yellow phosphor
coating. It is much cheaper and more energy-efficient than the RGB-type LEDs.
The typical modulation bandwidth is around 2 MHz which is more than enough
for localization purpose [2]. However, there are still some inherent constraints.
For example, the color shift keying (CSK) modulation and wavelength division
multiple access (WDMA) schemes only work with RGB-type LEDs and thus
should be avoided in a system for widespread adoptions. To fulfill the primary
illumination function of LED lights, we have to tackle the potential flicker and
dimming issues.

2.2 Large-scale Localization

The long-term goal is to build a commercially viable localization system for
widespread adoptions in large-scale indoor scenarios with minimized require-
ments of installation and configuration. We identify the key technical criteria
to enable this on the basis of [3] and [5] in the following:

Accurate. It concerns both the accuracy and precision. Normally, the
accuracy is measured by the mean distance error while the precision described by
the empirical cumulative distribution function (CDF). This is a straightforward
requirement of many indoor applications like LBS.

Responsive. It means a short localization latency and a high update rate.
This is essential for real-time use cases such as UGV navigation and pedestrian
tracking.
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Lightweight. It refers to the minimized computational overhead and sys-
tem complexity along with power consumption. In this way, compelling indoor
location services are more likely to be affordable by resource-constrained mo-
bile devices (e.g., smartphones) without draining heavily either the computation
resources or battery.

Scalable. The meaning is twofold: 1) scaling to the coverage area and 2)
scaling to the user density. In other words, the localization performance should
not degrade significantly as the localization scope increases or more users are
involved. This is critical to large-scale localization.

Robust. The system could function well in some harsh scenarios, e.g., with
some beacons broken abruptly or coming into operation for the first time.

Low-cost. The cost concerns money, time, labor, etc. It is challenging to
seek an elegant balance between the performance and the cost.

Ubiquitous. The location service can be generally enabled in most scenarios
once required. It is the ultimate goal to provide a ubiquitous indoor location
service which is comparable to what GPS has done outdoors.

Beacon broadcasting on top of LED lights founds the basis of a VLC-based
localization system. Specially, we focus on a photodiode-based VLC system for
localization purpose. In order to develop a VLC system conforming to the tech-
nical criteria for the large-scale localization, we give an in-depth discussion of the
design considerations from three aspects: network architecture, communication
links, and multiple access schemes.

2.3 Centralized vs. Distributed Architecture

For a centralized architecture, beacons are scheduled by a superior coordinator
through a wired or wireless backbone network. To grant a strict time syn-
chronization, localization methods based on time-of-arrival (TOA) and time-
difference-of-arrival (TDOA) normally require a wired backbone connection
among the transmitters [12]. Besides, methods that exploit the time division
multiple access (TDMA) also rely on a centralized architecture [28]. However,
the backbone network increases the total hardware complexity along with the
installation cost. Worse still, a centralized system is prone to collapse once the
coordinator is broken. On the contrary, the distributed architecture is free of
either a coordinator or a backbone connection. It is likely to provide improved
robustness during the operation, reduced hardware complexity and cost during
the installation. Many localization systems were proposed in the literature with
a distributed architecture [1, 20–22].

2.4 Two-way vs. One-way Communication

From now on, we consider a distributed architecture of the light beacons. As
for a broadcasting network, communication between the beacon and mobile user
can be either bidirectional or unidirectional. Contention based multiple access
schemes can be exploited on top of two-way communication, e.g., Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA). Time synchronization is
also feasible so as to favor a time-of-flight (ToF) localization method [5]. Several
networked VLC systems were proposed in the communication community that
exploited a CSMA/CA-based medium access control (MAC) [29,30]. From the
localization standpoint, however, systems relying on two-way communication
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between the infrastructure and the end user do not scale well as the beacons
and users increase. This is because the frequent handshake connections in two-
way communication burden the total traffic thus involving more interference
to other nodes working concurrently. Besides, the hardware complexity along
with cost will increase as two-way communication requires VLC transceivers
on both the beacon and mobile user sides. To enable large-scale localization,
we prefer one-way communication because of the better scalability and reduced
hardware complexity as well as cost. In fact, some camera-based commercial
localization systems offered by Qualcomm [3] and Phillips [31] support one-way
communication only.

2.5 Fixed vs. Random Multiple Access

We now focus on a fully distributed VLC system with one-way communication.
Due to the absence of either a backbone network or bidirectional communication,
it’s no longer possible to perform any synchronization either between each two
beacons or between the beacon and the mobile user. To tackle this problem,
some asynchronous multiple access schemes have been proposed, e.g., frequency
division multiple access (FDMA) [32] and code division multiple access (CDMA)
[33]. Normally, a fixed frequency carrier or pseudo-noise sequence is allocated
to each light beacon in advance. When it comes to a large-scale environment
with thousands of lights, however, the number of frequency carriers or pseudo-
noise sequences available are limited to use. Authors in [32] proposed an RF-
carrier allocation scheme to mitigate the inter-cell interference by reusing a
limited number of carriers in non-adjacent cells. In their context, one had to
guarantee that none of any adjacent lights shared the same frequency carrier.
It imposed a stringent constraint on the practical deployment, especially in a
large-scale environment. Indeed, this is a common problem of many other fixed
multiple access schemes (e.g., CDMA), but it has long been overlooked by many
researchers.

A radical idea is to dynamically assign a limited number of communication
resources (e.g., time slots, frequency carriers, and optical CDMA codes) in a
random fashion to all the beacons involved — random multiple access [34]. In
this context, every beacon in the VLC system competes with one another equally
for communication resources. As a result, the random access scheme is free of
the headache suffered by its counterpart. Collisions occur when two different
beacons compete for the same piece of resources (e.g., time slots). But this
problem can be easily worked out through multiple observations. To the best of
our knowledge, Epsilon [20] was the first experimental system in this commu-
nity that involved random multiple access — channel hopping. A BFSA-based
random access scheme was first introduced by Zhang et al [21] and evaluated
through simulation. In this paper, we will demonstrate the implementation of
this scheme by taking into account practical issues.

3 The Plugo System

The Plugo system, as shown in Figure 1, comprises a set of VLC-compatible
LED bulbs as positioning beacons and a photodiode receiver which is attached
to the user device (e.g., smartphones, tablets) via an audio jack. The system ar-
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chitecture is distributed without any backbone connections among these bulbs.
Each bulb broadcasts its unique beacon identity to the receiver by one-way
communication over a shared optical channel. The user device equipped with a
receiver takes continuous observations of multiple light beacons overhead retriev-
ing each beacon identity along with the corresponding received signal strength
(RSS). VLC-based localization is thus feasible on the top of these observations.

RSS Measurement

Demodulation

Localization Logic

ID, RSS

Random Multiple Access

Inter-frame Flicker Mitigation

VLC Transmitter

Modulation with Coding

Remote Configuration

Wireless Programmer (optional)

OTA Programming

Mains Supply

RF Channel

ID-1

ID-2 ID-3

ID-N

Optical 
Channel

Wireless Programming
Backend  (optional)

LED Bulb

User Device

…

Figure 1: The Plugo System Architecture.

Each bulb exploits a microcontroller to implement all the communication
logics as a firmware such as signal modulation and multiple access control. The
beacon message is encoded by simple on-off keying (OOK) modulation with
Manchester coding. Subject to one-way communication, the bulb could never
know whether the sent beacon message has been correctly interpreted or not by
the receiver. We adopt a BFSA-based random multiple access scheme in Plugo
to prevent persistent collisions among these “blind” and uncoordinated light
beacons. In addition, we have solved the induced inter-frame flicker problem.

To ease the system debugging such as the firmware update and parameter
configuration, we come up with a standalone wireless programming system ex-
ploiting the RF channel. It consists of a backend and a number of wireless
programmers residing in LED bulbs. Over-the-air (OTA) programming and re-
mote configuration can be thus achieved. However, it should be highlighted that
the RF links along with the wireless programming backend are not involved in
beacon broadcasting. They only serve for debugging purpose.
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3.1 Communication using OOK

3.1.1 Modulation and Coding

Many modulation schemes have been proposed for VLC, e.g., OOK, VPPM
(Variable Pulse Position Modulation), and OFDM (Orthogonal Frequency Di-
vision Multiplexing). As for beacon broadcasting, a high data throughput is
not necessary. We prefer a simple modulation scheme affordable in low-cost
hardware components. To be specific, we choose the OOK modulation with
Manchester coding which is also adopted by the IEEE 802.15.7 PHY I layer
specification. It favors DC balance and easy clock recovery. While the binary
frequency shift keying (BFSK) used by Epsilon [20] requires the FFT operation
during the demodulation, OOK is even more lightweight as it can be demod-
ulated on a low-cost microcontroller without DSP units. Constraints on the
modulation frequency fmod come from many factors such as the response time
of LEDs, the perception bandwidth of photodiodes, the sampling frequency of
the Analog-to-digital converter (ADC), etc. As for a proof-of-concept system
implementation, we empirically choose fmod = 10 kHz which is interpretable by
a USB soundcard with a maximum sampling frequency of 48kHz.

3.1.2 Protocol Definition

Due to the limited modulation bandwidth of the low-cost hardware compo-
nents, we do not chase a complete communication protocol with forward error
correction (FEC) channel coding (e.g., Reed-Solomon and convolutional cod-
ing) and sophisticated MAC control mechanisms. Instead, we design a simple
data frame structure that conforms to the beacon broadcasting application, as
shown in Figure 2. It is composed of three sections, namely, start-of-frame
(SOF), Data and end-of-frame (EOF). Figure 3 illustrates the frame composi-
tion using a sample of raw received VLC signals. SOF further contains a special
frame delimiter (SFD) to indicate the start of a new frame and a Sync sequence
for clock synchronization. The SFD here is indeed a 4-bit logic high symbol
that never occurs in the normal Manchester coding data. The Sync sequence is
8-bit long with alternate high and low logic symbols that carry timing informa-
tion. Similarly, the EOF contains a 4-bit logic low symbol (∼SFD) to indicate
the end of a frame. The data section consists of a 16-bit payload and a 4-bit
checksum, which are both encoded by Manchester coding. The payload carries
a unique identification code for each bulb. A 16-bit long code could easily cover
a normal indoor environment with tens of thousands of lights. The checksum
is generated by a simple XOR operation to verify the payload integrity. Once
data corruption is detected at the receiver side, the message will be discarded.
We do not perform any data retransmission under this circumstance, as the
light beacon could not detect the potential transmission failure due to the lack
of an uplink. Instead, the corrupted message could be recovered by subsequent
observations.

3.2 Random Multiple Access

Random multiple access is the key difference between Plugo and many other
systems that exploit fixed multiple access schemes such as FDMA and CDMA.
To the best of our knowledge, it was only adopted by Epsilon [20] and Zhang’s
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Figure 2: Data Frame Structure
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Figure 3: A typical raw received VLC signal fragment containing a full data
frame. It is shown in a bipolar form as we adopt a USB sound card with AC
coupling to acquire the analogue signal from the receiver front end. The signal
amplitude is normalized within [-1.0, 1.0]. Notations A to E: A-SFD, B-Sync,
C-Data Payload, D-Data Checksum, E-EOF.
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work [21] in the previous literature. Epsilon proposed a frequency channel hop-
ping scheme and showed its effectiveness through experiments. Zhang et al.
introduced the BFSA scheme by simulation. It defines a transmission frame
structure composed of a fixed number of time slots. Each light beacon selects
randomly a time slot in the frame and transmits its beacon message within that
slot. If any two adjacent lights select the same time slot or two overlapping time
slots, there will be a transmission failure because of the conflicts. The corrupted
messages could be recovered later as long as the beacons keep broadcasting.

We adopt the BFSA scheme to achieve random multiple access over the
shared optical medium in a distributed VLC network that supports one-way
communication. The success rate Psuccess is an important metric to evaluate
the system performance. It is defined in [21] as the probability of successful
transmission from all transmitters inside a coverage vicinity to a given receiver.
Supposing perfect synchronization among these transmitters, the theoretical
value could be calculated by the following formula where N is the number of
time slots per frame and n is the number of transmitters.

Psuccess =

〈
N
n

〉
Nn

As for an asynchronous system, starting points of the time slots from differ-
ent lights are probably misaligned. The success rate will decrease when more
collisions happen. Psuccess increases with the number of time slots per frame
N . Meanwhile, the communication bandwidth needed for each transmitter is
also N times the original. We have to make a trade off between the success rate
and communication bandwidth available on low-cost hardware components.

In the current implementation, the communication bandwidth is subject to
the sampling frequency of the audio ADC of the soundcard. The average wait-
ing period of the localization system is around 112ms when choosing N = 20
time slots for each transmission. It is also feasible to implement the signal de-
modulation on a microcontroller with on-chip ADCs whose sampling frequency
can easily reach 1 MHz. One underlying prerequisite is that the adopted OOK
modulation scheme is very lightweight to implement. It is expected to provide
higher success rates along with shorter localization latency.

The LED bulb performs data transmission when the desired time slot comes
and then goes to idle states. The Manchester coding data is DC balanced thus
eliminating the intra-frame flicker of the bulb during the data transmission.
However, how to mitigate the potential inter-frame flicker during the idle states
remains a problem.

3.3 Inter-frame Flicker Mitigation

Flicker refers to the visible fluctuation of the light brightness [23]. It further
comprises intra-frame flicker and inter-frame flicker. In this context, the intra-
frame flicker has been eliminated by Manchester coding. Thus we focus on the
mitigation of the inter-frame flicker. As suggested by the IEEE 802.15.7 stan-
dard [35], one can make the LED light transmit a dummy data message during
the idle states to prevent flicker. The modulation frequency of the dummy mes-
sage can either be in-band or out-of-band. In a particular case, the light can be
driven by a suitable DC current free of modulation. The idea is straightforward
— the overall brightness of the LED bulb will keep consistent as long as the DC
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intensity during the idle time slots equals to the average intensity during the
active time slots. The required DC current of each bulb varies. It is unlikely to
tune it one by one.

As for the Plugo system, it is a bad way to modulate the dummy message by
an in-band frequency because it can induce severe interference to other nodes
who are broadcasting beacon messages. We prefer to modulate it by a high
out-of-band frequency, e.g., 100 kHz in the current implementation, which can
be removed easily by a low-pass filter on the receiver. The dummy message
here is indeed repeated “01” symbols which provide an equal average intensity
to the beacon message. Ideally, we may also choose a much lower frequency
like 100 Hz which has to be filtered out by a high-pass filter. In this context,
however, the modulated OOK signal will be distorted severely by the high-pass
filter and become difficult to recover. This is due to the significant attenuation
of the low-frequency components of the modulated square waves.

3.4 Localization using Gaussian Process Regression

As for the localization validation of the Plugo system, we adopt a fingerprinting-
based localization algorithm which uses Gaussian process regression (GPR) [36]
based on our previous work [22,27]. To be specific, GPR is utilized to construct
an intensity distribution model for the environment according to sparsely col-
lected fingerprint samples. After that, a Bayes filter is used to do localization
with respect to the built map. To conclude, the localization algorithm comprises
the GPR-based environment modeling and Bayes filter-based localization.

3.4.1 GPR-based Environment Modelling

We consider a training set D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi de-
notes the input vector of a 2D position, yi is the scalar observation of the re-
ceived RSS for each light source. The observation is drawn from a noisy process
yi = f(xi)+ ε, where ε is an additive Gaussian noise with zero mean and known
variance σ2

n. For convenience in notations, the n inputs xi are aggregated into
a single matrix X ∈ Rn×2, and the observation values yi into a column vector
y ∈ Rn.

We use Gaussian process to predict the posterior distributions over func-
tions f from the training set D. The fundamental requirement of GPs is that
the function values for different inputs are correlated. That is, the covariance
between two function values f(xp) and f(xq) are dependant on the input values
xp and xq. The covariance relationship could be represented by a kernel func-
tion k(xp,xq). In practice, we normally choose a Gaussian kernel, a.k.a., the
squared exponential kernel,

k(xp,xq) = σ2
fexp

[
− (xp − xq)

2

2l2

]
where σ2

f is the signal variance and l the length scale. These parameters specify
how strongly the two points are correlated. The covariance function for the
noisy observations {y1, y2, . . . , yn} is,

cov(yp, yq) = k(xp,xq) + σ2
nδpq
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where σ2
n is the Gaussian noise and δpq is the Dirac function. As for the whole

training set, we have
cov(y) = K + σ2

nI

where K = [k(xp,xq)] ∈ Rn×n is the covariance matrix of the input values. The
observation values in D are jointly Gaussian,

y ∼ N(0,K + σ2
nI)

. Given a new input x∗, the posterior distribution over function values f(x∗) is
Gaussian,

P (f(x∗) |x∗,X,y) = N
(
f(x∗);µx∗ , σ

2
x∗

)
where

µx∗ = kT∗ (K + σ2
nI)−1y

and
σ2
x∗

= k(x∗,x∗)− kT∗ (K + σ2
nI)−1k∗

. k∗ ∈ Rn denotes the covariances between x∗ and n training inputs X.
Finally, we create a set of intensity distribution maps comprising the mean

maps and variance maps for each light beacon. Figure 4 shows a sample of the
generated maps for light #1. The mean map specifies the expected intensity
distribution in the sampled area and the variance represents the confidence of
the observation results.

Figure 4: The intensity distribution map for light #1 generated by GPR. The
left is the mean map and the right is the variance map.

3.4.2 Bayes Filter-based Localization

We use the Bayes filter to realize the localization with the built intensity distri-
bution maps. The basic idea is to estimate the current position xt on the basis
of the history estimation results x0:t−1 and observations y0:t−1 which could be
formulated as,

P (xt |y0:t,u0:t) ∝ P (yt |xt)

×
∑
xt−1

P (xt |xt−1,ut−1)P (xt−1 |y0:t−1,u0:t−1)
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where, u0:t is the control input, P (yt |xt) is the observation model from
GPR, P (xt |xt−1,ut−1) is the motion model, and P (xt−1 |y0:t−1,u0:t−1) is the
previous estimation state. In the current implementation, we do not involve
any motion measurement, e.g., using an IMU. The motion model respects a
zero-mean Gaussian distribution supposing that the transient position is static
and tends to move in any direction described by σ2. We initialize the location
prior using an uniform distribution. The localization result could be solved by
the maximum-a-posterior (MAP) estimation illustrated as,

x̂t = argmax
xt

{P (xt |y0:t,u0:t)}

4 Implementation Details

4.1 VLC-compatible LED Bulbs

Figure 5: The fully assembled LED bulb.

VCCS

AC 
220V~

LEDsAC-DC

DC-DC MCU
Debug

Port

Figure 6: Schematic diagram of the LED bulb driver circuitry

The VLC functionality is not yet available on off-the-shelf LED lights. As
shown in Figure 5, we aim at a compact design of the LED bulb which is easy
to use in a plug-and-go fashion. The bulb is designed with a standard E27
screw base so that it can be easily installed to a lamp socket. The schematic
of the LED driver is shown in Figure 6. It consists of an AC-DC power supply,
a DC-DC buck converter, a voltage-controlled current source (VCCS), a low-
cost microcontroller (MCU), a debug connector, and a LED plate. The AC-DC
power module provides an output of 12 V with a maximum power of 4.5 W.
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We choose a 3 W LED plate, considering the power tolerance. The DC-DC
converter steps down 12 V to 5 V to power other circuits. The LED current
is adjusted by the VCCS under the control of the microcontroller. The signal
modulation, coding, and the random multiple access control are all implemented
in the microcontroller as a firmware. With the aid of a wireless programmer,
the firmware can be updated over the air on demand. We build the bulbs on
the top of a set of off-the-shelf LED bulb components, as shown in Figure 7.
The aluminum made bulb case is good for heat dissipation. Moreover, there is
enough room inside the case to hold a small driver circuitry.

a) b) c)

d)e)

Figure 7: The primary components of LED bulbs. a) a standard E27 screw base,
b) an off-the-shelf AC-DC power supply, c) the VLC control board integrating
a DC-DC converter and a microcontroller, d) a LED plate, and e) a debugging
connector. The bulb case and shade are omitted for simplicity.

4.2 Photodiode Receiver

The schematic of the designed receiver circuitry is shown in Figure 8. It is com-
posed of a PIN photodiode (PD), a trans-impedance amplifier (TIA) with DC
bias correction, a low-pass filter (LPF), and a small lithium battery. We con-
nect the receiver to a USB soundcard via an audio jack. The signal acquisition
and demodulation are implemented on the computer with the python-alsaaudio
1 library. The lithium battery can be recharged via a micro USB connector.
Figure 9 shows the assembled circuitry.

The ambient interference comes from sunlight along with the fluorescent or
incandescent lights. It includes a large DC bias, some strong low-frequency com-
ponents (100 or 120 Hz), and high-frequency harmonics. Besides, the dummy
message broadcasting in our system also introduces a significant high-frequency

1https://larsimmisch.github.io/pyalsaaudio/
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DC Bias
Correction
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Figure 8: Schematic diagram of the photodiode receiver circuitry
1) 2) 3)

PD

TIA LPF

Figure 9: (1) The receiver circuitry connected with a USB sound card via the
audio jack; (2) Top view of the PCB showing the photodiode (highlighted in the
red rectangle); (3) Bottom view of the PCB showing the TIA and LPF (covered
by the lithium battery).

component. A large DC bias may cause saturation of the receiver circuitry.
To circumvent this situation, we involve an error integrator to TIA so as to
correct the induced DC bias. The output signal bias is stabilized to a fixed
value in spite of the ambient interference. We adopt a fourth-order Butterworth
low-pass filter to remove the significant high-frequency interference from the
dummy broadcasting. We do not take care of the low-frequency interference in
the current implementation.

4.3 Wireless Programming System

The wireless programming system is designed to fulfill two primary functions—
1) over-the-air (OTA) programming and 2) remote configuration. The moti-
vation arises from the needs of system debugging in a large-scale environment,
e.g., with tens or hundreds of VLC-compatible LED bulbs. During the debug
session, we may modify the firmware of the bulbs or alter configuration param-
eters from time to time. It would turn to be a nightmare if we have to unscrew
each bulb and flash a firmware image piece by piece. To circumvent this sit-
uation, a wireless programming system comes to play. It consists of a master
node (Figure 10-1) connected with a computer as the backend and a number
of slave nodes (Figure 10-2) attached to the LED bulbs. They are assembled
on the basis of a shared hardware design albeit running different versions of
firmware. We build several hardware prototypes using off-the-shelf components
including a microcontroller board with a USB interface and a low-cost 2.4G RF
communication module. To cover a broader area, the RF module in the master
node bears a larger transmission power considering that the data traffic occurs
mainly in the downlink.

The master node is in charge of each communication session. It could talk
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a)

2)

b)

1)

Figure 10: The wireless programming system prototype. (1): The master node
with a high-gain antenna; (2): The slave node consisting of a microcontroller
boad a) and a RF module b).

to any slave nodes by assigning a specific destination address so as to initiate
a firmware update or parameter configuration. All the control logics are im-
plemented as a firmware inside the microcontroller. The master node could be
configured by the computer via the USB interface using a set of customized
“AT” commands. As for the OTA programming, the computer specifies the
destination address along with other necessary parameters for RF communica-
tion (e.g., channel frequency) and sends the firmware image to be flashed to
the master node through USB. The firmware file will be packaged and then
dispatched to the designated slave node. The slave will recover the firmware
image and check its integrity. If the received file is valid, the slave node will
embark on the firmware downloading using in-system-programming (ISP) via
the UART communication with the target bulb. Besides, we have implemented
a virtual serial communication protocol which is transparent to users on top of
RF links. As a consequence, remote configuration of LED bulbs is feasible.

5 System Evaluation

In this section, we evaluate Plugo first with a small customized testbed through
field experiments, and then simulations for large-scale scenarios. As for the field
experiments, we focus on the evaluation of basic beacon broadcasting capability
of Plugo along with its localization performance in real applications. We im-
plement a fingerprinting-based localization algorithm and present a preliminary
localization result demonstrating the localization accuracy, consistency, respon-
siveness and robustness. To further explore the system scalability to large-scale
scenarios, we conduct simulations in a floor-size environment evaluating the
beacon broadcasting along with the localization feasibility.

We set up an indoor localization testbed in our lab with four customized
LED bulbs, as shown in Figure 11. Four bulbs are installed at the corners of a
3m×3m square testbed with a height of 2.37m over the ground. In the adopted
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Figure 11: Testbed with four LED bulbs: light#1, light#2, light#3 and light#4.
The x-axis and y-axis are labelled with single-end arrows.

localization algorithm, we use GPR to build a fine-grained light intensity map
upon sparse fingerprint samples. We create a 2D grid with 6× 6 points spaced
at 0.4m as the training samples for GPR in the central area, as shown in Figure
12. Then we evenly select 25 extra positions for evaluation covering both the
central and border area. We locate these points with an accuracy around 2cm
with the aid of a commodity laser range finder.

5.1 Beacon Broadcasting

Figure 13 shows a sample of raw VLC signals received simultaneously from four
LED bulbs. It is clear that beacon messages are randomly distributed in the
time domain. In most cases, they are separated neatly and can be successfully
recovered. When collisions occur, as shown in Figure 13-b), messages involved
will be corrupted. However, we can safely retrieve them by continuous obser-
vations later on. Figure 13-a) shows a special case. The received message is
decodable and checked to be correct by the received checksum. However, there
exists a noticeable fluctuation in the signal waveform which is indeed corrupted
by others. The RSS measurement is distorted in this situation and may further
degrade the localization performance. As a result, we would prefer to discard
it.

We measure the success rate Psuccess of the BFSA-based multiple access
scheme and compare it with the theoretical result in Figure 14. The measured
values are inferior to the theoretical ones due to the lack of synchronization
among the lights. Psuccess increases with the number of time slots per frame N .
In our implementation, we use a USB soundcard as the ADC on the receiver
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Figure 12: Testbed floor plan illustrating the training and testing points.
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Figure 13: A fragment of raw VLC signals received from four LED bulbs. The
decodable messages are marked by red triangles. a) and b) show magnified
views of typical corrupted signals.
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Figure 14: Success rate versus number of time slots per frame.

side with a maximum sampling rate of 48 kHz. To grant reliable signal recovery,
the OOK modulation frequency is set to 10 kHz. It takes around 5.6 ms to
transmit a full data packet. So as to provide an acceptable localization latency,
we empirically choose N = 20 for each transmission frame.

5.2 Localization with Plugo

During the localization experiment, we turn on the four bulbs and keep other
lights off. This is because the maximum power (3W) of the LED bulbs is
much lower than the normal power rating of other fluorescent lights. The low-
frequency components with high energy from these lights will cause the satura-
tion of the receiver circuitry. However, we claim that this will not be a problem
if we use higher-power LED lights as we can choose a smaller amplifying gain
to prevent the saturation.

We collect fingerprint samples at 36 positions and build the intensity distri-
bution maps for all the light beacons. The map for light #1 is shown in Figure
4. We first conduct the experiment at 25 static positions which are illustrated
in Figure 12. The estimated positions along with the groundtruth are plotted
in Figure 15. The maximum localization errors occur near the testbed borders.
This is because we only collect fingerprint samples in the central area of the
testbed. The generated light intensity map does not fit well the intensity dis-
tribution in the border area. Figure 16 plots the empirical CDF of the position
errors with the solid curve. The average error is 0.14m and the 90-percentile er-
ror is 0.33m. To evaluate the robustness to lights failure, we deliberately switch
off light #4 and redo the experiment. The position error CDF is shown by the
dashed line in Figure 16. The localization accuracy is slightly degraded. But
we still achieve an average error of 0.17m and a 90-percentile error of 0.50m. It
shows that the localization system built upon Plugo is robust to the absence of
lights to some extent.
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Figure 15: Localization results at 25 static positions.

We also evaluate the consistency of the localization results. Specifically, we
fix the VLC receiver on the center of the testbed and record the estimated
positions continuously for 300s, as shown in Figure 17. The average error is
0.046m and the standard deviation is 0.01m. The error plot appears to be
discrete. This is because of the discretization of the intensity distribution maps
with a resolution of 0.04m. It is reasonable that the average error is comparable
to the map resolution. The error variation at the static position is relatively
small which demonstrates sound system consistency. To demonstrate a real-time
use case, we move the receiver on the ground along a fixed trajectory comprising
two closed rectangles, as shown in Figure 18. The estimated trajectory includes
two close-loops similar to the groundtruth. We notice large errors around 0.4m
near the testbed borders and small errors in the central area. This reveals the
limitation of the adopted localization algorithm.

5.3 Simulation of Large-scale Scenarios

Since the hardware-based testbed covers a limited scope of 3m×3m and involves
only four LED bulbs, it prevents us from exploring the system scalability to
large-scale scenarios. To circumvent this situation, we perform simulations of the
beacon broadcasting along with localization in a floor-size indoor environment
with tens of LED bulbs.
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Figure 16: Position estimation error CDF when four lights are turned on (with
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Figure 18: Continuous localization results along a fixed trajectory.

5.3.1 Beacon Broadcasting

The simulation space is of size 30m×30m×2.5m. We place 81 LED bulbs evenly
on the ceiling with a separation of 3m, and put the receiver on the ground. The
vertical distance is fixed to h = 2.5m between the receiver and each light. We
create a 40 × 40 grid uniformly distributed on the ground and evaluate the
beacon broadcasting performance on each grid point.

In Section V.A, we adopt the success rate Psuccess as the evaluation met-
ric of beacon broadcasting in the field experiment, where we take all the four
lights into consideration and measure the success rate of recovering all the data
packets from these lights. However, in the large-scale simulation situation, it is
inappropriate to involve all the lights to localization. Lights that are out of the
FOV or far away from the receiver contribute little to the improvement of lo-
calization performance. Empirically, we intend to select the top four strongest
signals for localization. This is because the strongest signal normally comes
from a nearer LED light at a smaller incidence angle compared to others. It
will induce fewer uncertainties in RSS measurement.

As for conventional geometry-based localization methods, the minimum num-
ber of beacons is three for 2D localization and four for 3D cases. From the robot
state estimation perspective, however, we believe that this requirement can be
relaxed. That is, any number of effective measurements of the surrounding en-
vironment could probably help improve the location estimation. To this end,
we slightly modify the definition of success rate Psuccess as the total number of
successfully received messages over the number of sent messages from the top
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four strongest signal sources.
In a nutshell, we will measure the success rate at each evaluation point on the

ground considering only the top four strongest signals perceived by the receiver.
If the success rates are acceptable in the whole evaluation area, we may safely
consider that the beacon broadcasting performance of Plugo is well scalable to
large-scale scenarios.

The radiation pattern of most LED bulbs could be accurately characterized
by the Lambertian model [20]. Here we adopt a simplified first-order Lambertian
model formulated by

H(0) =

{
C cos ψcos φ

d2 (φ ≤ Φc)

0 otherwise

where H(0) is the DC channel gain at the receiver side, C is a constant which
accounts for the LED radiation power and the receiver amplifying gain, ψ and
φ are respectively the irradiation angle of LED bulbs and incidence angle of the
photodiode receiver, d is the LOS distance between the bulb and receiver, and
Φc is the photodiode FOV (70◦ in our case). The constant C is calibrated once
for good.

To further simplify the simulation scenario, we assume the photodiode re-
ceiver always faces upwards the ceiling and all the bulbs face downwards the
ground. Accordingly, we have

ψ = φ = cos−1h

d
(φ ≤ Φc)

and

H(0) = C
h2

d4
(φ ≤ Φc)

. To this end, the channel gains at different receiving locations could be easily
calculated for each LED bulb.

We generate an artificial VLC signal sequence for each LED bulb embedding
its unique identification code using OOK modulation with Manchester coding
along with the BFSA-based multiple access control. The data frame structure
is the same as that used in a real LED bulb. To be specific, we choose N = 20
time slots per transmission and conduct 20 times of beacon transmissions. As
a result, we have 400 time slots in total for each VLC signal sequence. The
received VLC signal at each evaluation location is a linear combination of VLC
signals emitted by all the lights within the photodiode FOV weighted by the
corresponding DC channel gains. Finally, we feed the generated signals to the
decoding procedure used by field experiments and calculate the success rates.

Figure 19 plots the histogram of the success rates evaluated at 1600 positions
that are evenly selected on the ground. Most success rates center on the median
value of 0.85. The “tall and thin” shape of the histogram implies reliable bea-
con broadcasting performance in the large-scale simulation environment. We
notice that the average success rate is much higher than that measured in the
field experiment which also adopts N = 20 time slots per transmission. This is
because the time slots for different LED bulbs is perfectly aligned in the simu-
lation cases. Collisions are thus avoided due to the partial overlap of time slots
that are frequently encountered in real applications. In addition, we simulate
the noise in beacon broadcasting using an additive white Gaussian noise with a
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small amplitude. In the real scenario, however, the noises may be much severe
thus degrading the success rate. Then we set N = 50 and redo the simulation
with the results shown in Figure 20. The histogram is shifted to the right with
a higher median value around 0.93 along with a much smaller spread. This
reveals that the beacon broadcasting performance improves with the number of
time slots assigned to each transmission.
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Figure 19: Histogram of the success rates at 1600 positions with N=20.

5.3.2 Localization

We set up a simulation environment sketching the second floor of the CYT
building in HKUST, as shown in Figure 21, which consists of some representative
indoor scenarios such as corridors, offices and laboratories. The total coverage
area is of size 55m × 40m. Specifically, we evaluate the large-scale localization
performance in the circular corridor along with the laboratory. We place 83
modulated lights on the ceiling with a fixed height of 2.5m to the receiver plane.
Besides, the receiver is assumed to face upwards and have an FOV of 70◦.

We implement a fingerprinting-based localization method similar to that of
the field experiments. First, we build the intensity distribution maps for each
light and show several of them in Figure 22. During the simulation scenario,
an individual sets out from the starting point on the upper-left corner, walks
anticlockwise along the corridor, goes through the lab and returns back finally.
The walking trace covers a majority part of the circular corridor and the lab.

The simulation results are illustrated in Figure 21. The estimated positions
are shown by the plus signs. Besides, the color variations on the plot show the
corresponding estimation uncertainties. Intuitively, the estimated path matches
the ground truth quite well. In addition, the empirical CDF of the position
estimation errors is plotted in Figure 23. The average and 90-percentile errors
are around 0.40m and 0.78m respectively, which are acceptable for the indi-
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Figure 20: Histogram of the success rates at 1600 positions with N=50.
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Figure 22: Intensity distribution maps generated by GPR for 5 repre-
sentative lights which are located in the circular corridor and the lab at
(0.5, 15.5),(27.5, 0.5),(54.5, 15.5),(27.5, 30.5),(36.5, 15.5).

26



vidual way-finding. The localization accuracy is inferior to that of the field
experiments, mainly due to the coarse granularity of the built maps. As the
map size grows quadratically when the granularity decreases, we choose 0.15m
in the simulation to make the map generation and fingerprints matching process
tractable. It is possible to improve the localization accuracy yet at the cost of
finer maps and longer processing time, which may violate the responsiveness in
real-time applications.
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Figure 23: The empirical CDF of position errors in the simulation.

5.4 Discussion

According to the key technical criteria identified in Section II.B for the ex-
pected large-scale indoor localization technologies, we briefly discuss the system
performance of Plugo in beacon broadcasting and localization.

Accuracy & Precision: Through the fingerprinting-based localization al-
gorithm, we demonstrated the feasibility of accurate localization using Plugo.
We have achieved an average accuracy of 0.14m and a 90-percentile accuracy of
0.33m. In the literature, the 90-percentile accuracy is normally adopted as the
precision evaluation metric.

Responsiveness: We demonstrated a real-time application of the proto-
typing localization system by tracking a moving receiver along close-loops on
the ground with an update rate around 9 Hz. The estimated trajectory showed
sound geometry consistency.

Scalability: In Section II, we analyzed qualitatively the system scalability.
Moreover, we demonstrated the system scalability in beacon broadcasting to
large-scale scenarios, and showed the feasibility of VLC-based localization in a
floor-size environment by simulation.
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Robustness: We considered a special case of light failure by switching off
one of the four lights. The localization accuracy is slightly degraded but still
acceptable. The result has revealed, to some extent, the system robustness.

Other Criteria: The remainder of the aforementioned criteria are char-
acterized by “lightweight”, “low-cost”, and “ubiquitous”. We emphasize that,
according to previous discussions, they are inherently fulfilled by VLC-based
localization systems using photodiode receivers.

6 CONCLUSIONS

In this paper, we presented the design, implementation, and evaluation of Plugo,
a dedicated VLC system towards large-scale localization. It was built upon a
number of customized commodity LED bulbs and a photodiode receiver. Spe-
cially, the bulbs are with compact design favoring the plug-and-go deployment.
We conducted an in-depth discussion of the design constraints along with con-
siderations for a photodiode-based VLC system towards large-scale localization.
Accordingly, we identified three underlying enablers: 1) distributed architecture,
2) one-way communication, and 3) random multiple access. A BFSA-based ran-
dom multiple access scheme was implemented with practical issues taken into
account. Experiment results showed that Plugo was able to achieve reliable bea-
con broadcasting over the shared optical medium. In addition, we demonstrated
its scalability to large-scale scenarios through simulation. Finally, a preliminary
localization result is demonstrated using Plugo in a 3m × 3m square testbed
showing an average accuracy of 0.14m and a 90-percentile accuracy of 0.33m,
which has been greatly improved comparing with the state-of-the-art.
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