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Abstract—Omnidirectional cameras are widely used for
robotics applications in structured environments. However, be-
cause of the distorted field of view (FOV), it is hard to describe
the primitive features extracted from them robustly. In this paper,
we tackle the problem by using Histogram of Gradient (HoG)
statistics for the regions of interest (ROI) in the neighbour of
major vertical lines extracted from the panoramic image. As a
validation, we compare the proposed algorithm with state-of-
the-art based on two widely used datasets, leading to evidently
better performance. We also introduce a scene reconstruction
scenario using the proposed descriptor based on 1D Trifocal
Tensor framework. The comparative results show the competence
against other related works.

I. INTRODUCTION

A. Motivation

Scene representation is a subtle problem, especially when
non-standard imaging sensors such as omnidirectional camera
is used. Although the calibration is less a problem using
nowadays techniques [1], algorithms that independent from
calibration result are still preferred, due to complexity and
generalization potentials.

Omnidirectional camera is considered to be one of the most
efficient sensors for environment modelling [2], [3]. However,
a reliable descriptor for the conducted panoramic images
is still required to be developed, moreimportant properly
evaluated. Considering the characteristics of omnidirectional
camera, we could see that the most reliable feature is the set
of vertical lines perpendicular to the motion plane of the robot,
since they are preserved regardless rotation and translation.

In this paper, we propose an adaptive descriptor for major
vertical lines, which is inspired by and extended from [4].
We evaluate the performance in two steps. First we evaluate
matching precision against [4] using two widely used datasets.
Besides, we present a scene reconstruction scenario using
trifocal tensor [5], as an application of the proposed feature.

B. Related Work

Several techniques are used to describe the surrounding
environment of a robot. One of the major differences lies in
the various descriptors used by structure reconstruction. We
could see that many algorithms utilize keypoint based features
on perspective cameras, e.g. PTAM [6] uses mainly FAST
corners[7]; FAB-MAP [8] uses mainly SIFT [9] or SURF
[10]. However, not many applications or descriptors have been
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reported on omnidirectional camera, such as the example de-
picted in figure 1. The main reason is the distortion introduced
by the nonlinear transformation from the mirror shape. The
nonuniform resolution will greatly affect the stableness of
patch based descriptors.

Fig. 1. Omnidirectional camera and panoramic image

There are two ways to represent the environment by images:
First, descriptors can be extracted from the whole image, e.g.
by Fourier transformation [11], [12], [13]. Among the existing
algorithms designed for omnidirectional camera, “Fingerprint
of places” [14] and FACT [15], [3] are color based features,
where the vertical line is considered as an important hint for
the formation of descriptors of the whole image. The second
category is object oriented representations [16], [17], [18]
namely feature based algorithms. Several lightweight keypoint
descriptors were developed [19], [20] as well and got widely
applied in scene recognition problems [21], [22].

We notice that beside the wide FOV, an important reason
for choosing omnidirectional vision is that, when the camera
is mounted perpendicularly to the plane of motion, the vertical
lines of the scene are mapped into radial lines on the images.
Regarding descriptor for such image primitives, [4] is defined
for line description. However, we found it is hard to adapt it to
robot translation, by which the length of critical vertical lines
varies, due to the ROI is fixed even for completely different
image frames. In this paper, we propose that the ROI need
to be adaptable to different environment, and evaluate the
parameter selection accordingly.

There are two groups of techniques to work on the vertical
line matching. The first method deals with the individual line
segments such as [23], [4] and the second one works with the
grouping of the line segments [24], [25], [26]. Considering
the complexity of the second group, in this paper we use the
separation angle between two descriptor vectors as the primary
metric to represent the similarity.

The panoramic images taken from omnidirectional camera
can be used with the raw image or an unwrapped representa-



tion. In the case of full calibration, the raw image is usually
taken as the algorithm input. However, when we focus on the
vertical lines, the unwrapped image along the horizontal line
is more feasible [27], [28]. This unwrapping process implies
a calibration of the image center and extraction of the main
circular shape as the right image in figure 1, which is dealt
with by Hough Transformation described in section II.

In order to reconstruct scene appearances, the feature po-
sitions are to be recovered by geometrical constraints. In
this paper, we use 1D Trifocal Tensor [29] to realize this
reasoning process, which is mostly used in visual homing
problem [29]. Comparing with other homing algorithms [30],
[31], the trifocal tensor will result in not only robot positions,
but also feature distributions. This provides a basis for scene
reconstruction. We use the proposed features to provide a
group of geometrical constraints in this work.

C. Arrangement

The rest of this paper is organized as follows. We first
introduce the feature extraction and description in section II.
Then, the scene reconstruction algorithm will be outlined in
section III. The parameterization and evaluation will be carried
out with widely cited datasets in section IV, followed by
conclusion of this work in the end.

II. PROPOSED DESCRIPTOR

In this section, we introduce the major processes to detect
salient features, namely vertical lines, and the descriptor
formation.

A. Detection of Major Vertical Lines

An unwrapped image will facilitate the extraction of major
vertical lines, since all the radial lines are projected into
vertical direction. Hough Circle Detection algorithm is first
performed in order to obtain the radius of effective FOV and
the center coordinate. The detection results is shown as figure
2. The outermost circle is taken as the effective FOV, since its
inner part covers all valid information of the panoramic image.
The estimated image center is taken by the circle center shown
in figure 2(c).

(a) Raw Image (b) Detected circles (c) Outer circle

Fig. 2. All the circles detected in the raw image. The outermost circle is
extracted.

The raw omnidirectional image is then unwrapped using in-
terpolation as shown in figure 3(a) 1. The unwrapping mapping
makes the detection of vertical lines more straightforward.
Using a 5-dimensional x-direction Sobel filter, all vertical lines

1The panoramic is with resolution 1024x176 in our tests.

are extracted. An instance is shown in figure 3(b). Based on
the statistics of the accumulated strength of filtered results
in x-direction, vertical lines with a length longer than average
are considered as salient. (c) shows the detected major vertical
lines projected into the raw unwrapped image.

(a)

(b)

(c)
Fig. 3. Major vertical lines extracted from an unwrapped panoramic image

B. Descriptor Formulation

In order to match the vertical lines across images, the
formation of the descriptor is essential. Sometimes a tracking
scheme can be adopted to help the matching process, where
detected features have to be matched between two consecutive
images [4]. In this work, we emphasize the appearance based
matching without considering the tracking results.

We build the descriptor using the Histogram of Oriented
Gradient (HoG). Considering the limitation of fixed circular
shapes used by [4], we reshape the ROI by rectangles. For
each major vertical line, a set of 6 ROI rectangles is extracted
as shown in figure 4, where the width of rectangle can be
adapted for different environments.

Fig. 4. The shape of the modified descriptor with varying scaleX . The
width of the descriptor can change to adapt different environments.

In order to calculate the HoG efficiently, we first divide the
orientation space ranged from −π to π into Nb bins. Then two
components of the image gradients for x- and y-directions, Ix
and Iy , are calculated for each pixel in each rectangle. The
counts per phase is then clustered, according to the discretized
phase of the gradients Φ.

M =
√
I2x + I2y , Φ = arctan(Iy, Ix) (1)



Afterwards, the gradient magnitude M of each pixel is ac-
cumulated in the corresponding bin over the Φ space. An
example of the calculated HoG is shown in figure 5.
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Fig. 5. An instance of non-normalized HoG with Nb = 32 bins.

The accumulated magnitude values are normalized in each
rectange as the value with the maximum gradient magnitude
is equal to one. All the bins with magnitude value greater than
0.1 ( 10% of the maximum value ) are threshold as 0.1, then
perform normalization again. This extra operation makes the
descriptor more robust changes since the gradient magnitudes
are more sensitive than orientation, in the case of illumination
changes. At the end, three pairs of histograms H1, H2 and
H3 regarding left and right side of a vertical line are used as
descriptor:

H1 = [H1,L, H1,R]
H2 = [H2,L, H2,R]
H3 = [H3,L, H3,R]

(2)

We could see that two major parameters will determine
the descriptor for a given image, i.e. number of bins for the
HoG Nb and width of the rectangle, indicated by scaleX .
For different specific environment, the optimal parameter set
varies. The parameterization is evaluated in section IV.

C. Feature matching

In order to measure the similarity between two descriptors,
we consider a descriptor as a vector with 6×Nb dimensions.
Intuitively, we take the separate angle of two normalized
descriptors x,y as the measure of the distance, as:

α(x, y) =
〈x,y〉
|x||y|

(3)

where 〈x,y〉 denotes the inner product of the two descriptors.
When comparing the features from two images A and B,
letting [A1, A2, .., Am] be the descriptors of image A and
[B1, B2, .., Bn] be the descriptors of B, a positive matching
is validated by the second best match is smaller than rth ratio
of the best match. An emperical rth is 80%.

Considering the operation on a sequence of images, es-
pecially for tracking problems, we use a naive stratergy as
follows. After matching the lines in the first two images,
the same procedure is applied for the second and the third
images for the vertical lines that have already been matched

previously. As a sample result, a group of matched triple in
three consecutive images is illustrated as in figure 6.

Fig. 6. An example of matched vertical line triples. The bearing information
calculated for each image is used for trifocal tensor calculation.

III. SCENE RECONSTRUCTION

Using trifocal tensor for scene reconstruction, the system
needs bearing angles of matched features from three different
robot positions. By using these three view bearing information,
the 1D trifocal tensor can be calculated [29]. The trifocal
tensor gives a constraint on relative position and orientation
of three different robot positions. Given the estimated relative
positions, by triangulating the landmarks, the geometrical
structural information can be recovered.

A. Tensor Calculation
For the tensor calculation, we use the 1D trifocal tensor

introduced in [32], [33] as basis. We concisely outline the
process as follows.

The inputs of the tensor calculation process is at least seven
bearing information triple that comes from three different robot
positions. The bearing information from each major vertical
line is kept in a state vector u = (sinα, cosα)T , where α is
the bearing angle of a line feature.

Following the notation of [32], θ’s are used to present the
robot heading and tx, ty are used to denote the translation in
x- and y-direction for each local frame. The trifocal tensor is
represented as:

T = [T111 T112 T121 T122 T211 T212 T221 T222]T

where
T111 = t

′

ysin(θ
′′
)− t

′′

ysin(θ
′
);

T112 = t
′

ycos(θ
′′
) + t

′′

xsin(θ
′
);

T121 = −t
′

xsin(θ
′′
)− t

′′

y cos(θ
′
);

T122 = −t
′

xcos(θ
′′
) + t

′′

xcos(θ
′
);

T211 = −t
′

ycos(θ
′′
) + t

′′

y cos(θ
′
);

T212 = t
′

ysin(θ
′′
)− t

′′

xcos(θ
′
);

T221 = t
′

xcos(θ
′′
)− t

′′

ysin(θ
′
);

T222 = −t
′

xsin(θ
′′
) + t

′′

xsin(θ
′
).

(4)

The trifocal constraints is rewritten using the coefficient
matrix A and tensor T as (5).

AT =[u1u
′

1u
′′

1 u1u
′

1u
′′

2 u1u
′

2u
′′

1 u1u
′
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′′
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′
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′′
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′
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′′
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′

2u
′′
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′

2u
′′

2 ]T = 0
(5)



In order to solve approximated trifocal tensor T , the eigen-
vector associated with the smallest eigenvalue of the matrix
ATA is used, which theoretically obtained by singular value
decomposition (SVD) of matrix A.

B. Solvers for scene reconstruction

Unlike the application of trifocal tensor in visual homing
problem, the scene reconstruction problem greatly relies on the
precision of the estimation of feature poses. The geometrical
relations, such as translations and rotations, embedded in (4)
are to be solved by minimizing equation 5. We try with
three different solvers: Gauss-Newton algorithm, Levenberg-
Marquardt algorithm and Stimulated Annealing. A typical
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Fig. 7. Upper Left: Ground Truth, Upper Right: Gauss-Newton, Lower Left:
Levenberg-Marquardt, Lower Right: Stimulated Annealing. The blue, green
and red bars show the estimated robot position and orientation. The blue stars
with numeric IDs indicate the reconstructed feature positions.

simulation result is shown as figure 7, where 1-degree Gaus-
sian observation noise is introduced. Qualitatively, we can
see that they lead to similar results in robot pose estimation
2. However, due to the sensitiveness of the triangulation to
rotation error, the feature reconstruction results vary much.
Therefore, although stimulated annealing runs around 10 times
slower than other two algorithms, as a global optimizer, we
consider it as the primary solver in this work.

IV. EVALUATION & VALIDATION

A. Overview and Dataset

Two open source online datasets are adopted to validate the
proposed descriptors. Both datasets are built with a mirrored
omni-directional camera mounted on mobile wheeled robots
for indoor environments [34], [35].

For each sample of a database, the feature matching is
evaluated and compared with the state-of-art descriptor [4],
in terms of true positive ratio. Please notice that the algorithm
complexity for [4] and the proposed method is similar, since

2Due to space limit, we omit the quantitative results in this paper.

they both use HoG description. Therefore, the execution time
is not taken for comparison.

B. Parameter Selection

In order to optimize the parameters, for specific environ-
ments the two major parameters are to be selected based on
sample statistics. The ranges of parameters are: Nb values are
varied from 16 to 72, with increments by 4; the width of the
descriptor(scaleX) varies from 0.1 to 0.8, with increments
by 0.1. We construct comparison matrices based on the true
positive rates of the two descriptors on random samples. The
results for the two datasets are shown in table I, II and table
III, IV, respectively. For visualization purpose, we plot table I
and III as shown in figure 8.
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(b) Vardy A1originalH Dataset [34]

Fig. 8. Visualization of evaluation tables for parameter selection.

We have the following observations for this part of evaluation:
• The proposed algorithm is evidently better performed in

both datasets.
• The increment of number of bins for HoG will help the

matching. However this emendation will have less effect
when it reached to a certain large number. Considering
the complexity of the histogram construction and feature
matching is related to Nb, a “good enough” selection
should be the knee value in the plot by figure 8.

• For both descriptors, the performance is worse for the
COLD dataset. We observe the major reason is that the
frame-edges of glass doors and windows in the COLD
dataset triggers frequently wrong description by consid-
ering the scene behind. For the case of Vardy dataset, the
appearances of the major vertical lines are usually not
affected by perspective changes. This is the limitation
for both descriptors.

As a result, the parameter set {Nb, scaleX} for COLD dataset
is {52, 0.6}, and {36, 0.4} for Varday dataset. We see that the
introduced adaptive parameter scaleX greatly optimize the
performance of the descriptor.

C. Reconstruction

We evaluate the performance for scene reconstruction by tri-
focal tensor. A typical failure case can be found in figure 7(b)
and (c). The reconstructed robot positions are good enough
for robot homing problems, however, the reconstruction of
landmark distribution is poorly obtained. We found it is related
to two characteristics of the coefficient matrix A, the smallest
eigenvalue (minλi) and the condition number of the matrix



scaleX/Nb 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

0.1 54.5 54.5 51.5 54.5 57.5 57.5 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6
0.2 54.5 54.5 54.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 60.6 60.6 60.6 57.5 57.5
0.3 57.5 60.6 60.6 60.6 60.6 60.6 60.6 69.6 69.6 60.6 60.6 60.6 60.6 60.6 60.6
0.4 54.5 57.5 57.5 60.6 57.5 63.6 63.6 66.6 60.6 60.6 57.5 60.6 60.6 57.5 57.5
0.5 54.5 54.5 63.6 63.6 63.6 63.6 63.6 66.6 66.6 66.6 66.6 66.6 63.6 63.6 63.6
0.6 57.5 54.5 54.5 60.6 66.6 66.6 69.6 69.6 69.6 72.7 72.7 72.7 72.7 72.7 72.7
0.7 63.6 57.5 69.6 69.6 69.6 69.6 69.6 69.6 66.6 66.6 63.6 63.6 63.6 63.6 63.6
0.8 57.5 57.5 63.6 60.6 60.6 60.6 60.6 60.6 60.6 60.6 57.5 63.6 63.6 63.6 63.6

TABLE I
THE TRUE POSITIVE RATIO WITH THE PROPOSED DESCRIPTOR, BY VARYING Nb AND scaleX (THE COLD DATASET).

Nb 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

60.6 60.6 60.6 57.5 57.5 60.6 57.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5
TABLE II

THE TRUE POSITIVE RATIO WITH [4], BY VARYING Nb (THE COLD DATASET).

scaleX/Nb 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

0.1 75.7 75.7 75.7 75.7 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8 78.7 78.7 81.8
0.2 90.9 87.8 90.9 87.8 87.8 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 90.9 90.9
0.3 87.8 87.8 87.8 87.8 87.8 90.9 84.8 84.8 84.8 84.8 84.8 84.8 84.8 90.9 84.8
0.4 84.8 81.8 81.8 87.8 87.8 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9
0.5 81.8 81.8 81.8 81.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8
0.6 78.7 75.7 81.8 78.7 87.8 87.8 87.8 90.9 84.8 84.8 84.8 84.8 84.8 81.8 81.8
0.7 81.8 84.8 84.8 84.8 81.8 81.8 81.8 81.8 81.8 81.8 78.7 78.7 78.7 72.7 72.7
0.8 84.8 84.8 87.8 87.8 87.8 87.8 84.8 84.8 84.8 84.8 81.8 81.8 81.8 78.7 78.7

TABLE III
THE TRUE POSITIVE RATIO WITH THE PROPOSED DESCRIPTOR, BY VARYING Nb AND scaleX (THE VARDY A1ORIGINALH DATASET)

Nb 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

60.6 60.6 60.6 66.6 66.6 69.6 69.6 69.6 69.6 69.6 69.6 69.6 69.6 69.6 69.6
TABLE IV

THE TRUE POSITIVE RATIO WITH [4], BY VARYING Nb (THE VARDY A1ORIGINALH DATASET).

A (cond(A)). minλi defines the precision of trifocal tensor
estimation by SVD, and cond(A) reflect the stableness of the
solution to equation 5. These two criteria can be taken as
further assessment of the reconstruction quality.

1) Effect on the smallest eigenvalue: By increasing the
standard deviation of the observation noise from 0.1 to 10,
we show the uncertainty of the simulated features in figure 9,
whereas minλi rises as depicted in figure 10. It implies that in
order to have a reliable reconstruction, minλi needs to be as
small as possible. Over a given threshold, the reconstruction
results need to be discarded.

2) Effect on the conditional number: For the second char-
acteristic cond(A), the relation to the variety in the bearing
information is investigated. A larger conditional number will in
general lead to unreliable solutions for linear systems. In order
to test how the perspective differences affect the robustness of
reconstruction, we use different distances among the observing
poses, depicted in figure 11. Intuitively, we can imagine that
the closer the robot positions are, the more confused for
the scene recognition. Figure 12 validates this assumption by
plotting the relation between cond(A) and the mean distance
between two observation poses. We can observe that a larger
distance will optimize the quality of the reconstruction, but it

Fig. 9. Landmark locations with uncertainty.

usually leads to less positive matches for real data. Therefore
compromise is required for threshold selection. 3

3) Reconstruction result: Given the analysis on parame-
terization and quality justification, the scene reconstruction is
carried out by firstly thresholding the aforementioned criteria.

3In this work, threshold for minλi is 0.02, and threshold for cond(A) is
100.
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Fig. 11. Examples of various distances among robot positions. The effect
of the distance variance is investigated while keeping the same feature
distribution.

Unreliable matched feature sets are discarded. Then, geomet-
rical information is calculated from equation (4) and (5) using
Stimulated Annealing, using a single-shot odometry measure
to correct the transformation scale between image space and
real world. A qualitative result is shown in figure 13 using the
images in figure 6.

V. CONCLUSION

In this paper, we first introduced an adaptive descriptor de-
signed for omnidirectional camera. It works on the panoramic
images, independent of intrinsic calibration. It outperforms
the state-of-the-art, in terms of recall precision as well. The
proposed descriptor is validated by a scene reconstruction
scenario. Beside, two criteria for scene recognition problem
are proposed and validated through simulation. As future work,
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Fig. 13. Reconstructed environment in 3D by trifocal tensor

we will focus on applications using the proposed descriptor
and quantitative assessment of the reconstruction quality.
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